Optimal. Leaf size=31 \[ \log \left (\frac {3}{x+x^2-\left (e^{x^2+\frac {5+x}{x}}+5 x\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2-48 x^3+e^{\frac {2 \left (5+x+x^3\right )}{x}} \left (10-4 x^3\right )+e^{\frac {5+x+x^3}{x}} \left (50 x-10 x^2-20 x^4\right )}{e^{\frac {2 \left (5+x+x^3\right )}{x}} x^2-x^3+10 e^{\frac {5+x+x^3}{x}} x^3+24 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 \left (-5+2 x^3\right )}{x^2}+\frac {10-50 e^{1+\frac {5}{x}+x^2}-239 x-10 e^{1+\frac {5}{x}+x^2} x-48 x^2-4 x^3+20 e^{1+\frac {5}{x}+x^2} x^3+96 x^4}{x \left (e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-5+2 x^3}{x^2} \, dx\right )+\int \frac {10-50 e^{1+\frac {5}{x}+x^2}-239 x-10 e^{1+\frac {5}{x}+x^2} x-48 x^2-4 x^3+20 e^{1+\frac {5}{x}+x^2} x^3+96 x^4}{x \left (e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2\right )} \, dx\\ &=-\left (2 \int \left (-\frac {5}{x^2}+2 x\right ) \, dx\right )+\int \left (-\frac {239}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2}-\frac {10 e^{1+\frac {5}{x}+x^2}}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2}+\frac {10}{x \left (e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2\right )}-\frac {50 e^{1+\frac {5}{x}+x^2}}{x \left (e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2\right )}-\frac {48 x}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2}-\frac {4 x^2}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2}+\frac {20 e^{1+\frac {5}{x}+x^2} x^2}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2}+\frac {96 x^3}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2}\right ) \, dx\\ &=-\frac {10}{x}-2 x^2-4 \int \frac {x^2}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2} \, dx-10 \int \frac {e^{1+\frac {5}{x}+x^2}}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2} \, dx+10 \int \frac {1}{x \left (e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2\right )} \, dx+20 \int \frac {e^{1+\frac {5}{x}+x^2} x^2}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2} \, dx-48 \int \frac {x}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2} \, dx-50 \int \frac {e^{1+\frac {5}{x}+x^2}}{x \left (e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2\right )} \, dx+96 \int \frac {x^3}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2} \, dx-239 \int \frac {1}{e^{2+\frac {10}{x}+2 x^2}-x+10 e^{1+\frac {5}{x}+x^2} x+24 x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.38, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^2-48 x^3+e^{\frac {2 \left (5+x+x^3\right )}{x}} \left (10-4 x^3\right )+e^{\frac {5+x+x^3}{x}} \left (50 x-10 x^2-20 x^4\right )}{e^{\frac {2 \left (5+x+x^3\right )}{x}} x^2-x^3+10 e^{\frac {5+x+x^3}{x}} x^3+24 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.30, size = 38, normalized size = 1.23 \begin {gather*} -\log \left (24 \, x^{2} + 10 \, x e^{\left (\frac {x^{3} + x + 5}{x}\right )} - x + e^{\left (\frac {2 \, {\left (x^{3} + x + 5\right )}}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 38, normalized size = 1.23 \begin {gather*} -\log \left (24 \, x^{2} + 10 \, x e^{\left (\frac {x^{3} + x + 5}{x}\right )} - x + e^{\left (\frac {2 \, {\left (x^{3} + x + 5\right )}}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 40, normalized size = 1.29
method | result | size |
norman | \(-\ln \left ({\mathrm e}^{\frac {2 x^{3}+2 x +10}{x}}+10 x \,{\mathrm e}^{\frac {x^{3}+x +5}{x}}+24 x^{2}-x \right )\) | \(40\) |
risch | \(-2 x^{2}-\frac {10}{x}+\frac {2 x^{3}+2 x +10}{x}-\ln \left ({\mathrm e}^{\frac {2 x^{3}+2 x +10}{x}}+10 x \,{\mathrm e}^{\frac {x^{3}+x +5}{x}}+24 x^{2}-x \right )\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 54, normalized size = 1.74 \begin {gather*} -\frac {10}{x} - \log \left ({\left (24 \, x^{2} + 10 \, x e^{\left (x^{2} + \frac {5}{x} + 1\right )} - x + e^{\left (2 \, x^{2} + \frac {10}{x} + 2\right )}\right )} e^{\left (-\frac {10}{x} - 2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{\frac {2\,\left (x^3+x+5\right )}{x}}\,\left (4\,x^3-10\right )+{\mathrm {e}}^{\frac {x^3+x+5}{x}}\,\left (20\,x^4+10\,x^2-50\,x\right )-x^2+48\,x^3}{10\,x^3\,{\mathrm {e}}^{\frac {x^3+x+5}{x}}+x^2\,{\mathrm {e}}^{\frac {2\,\left (x^3+x+5\right )}{x}}-x^3+24\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 36, normalized size = 1.16 \begin {gather*} - \log {\left (24 x^{2} + 10 x e^{\frac {x^{3} + x + 5}{x}} - x + e^{\frac {2 \left (x^{3} + x + 5\right )}{x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________