Optimal. Leaf size=24 \[ \log \left (2+x-(2+2 x)^4+\log ^2\left (\log \left (\frac {2}{2+x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 34, normalized size of antiderivative = 1.42, number of steps used = 2, number of rules used = 2, integrand size = 102, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {6741, 6684} \begin {gather*} \log \left (16 x^4+64 x^3+96 x^2+63 x-\log ^2\left (\log \left (\frac {2}{x+2}\right )\right )+14\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (-126-447 x-576 x^2-320 x^3-64 x^4\right ) \log \left (\frac {2}{2+x}\right )\right )+2 \log \left (\log \left (\frac {2}{2+x}\right )\right )}{(2+x) \log \left (\frac {2}{2+x}\right ) \left (14+63 x+96 x^2+64 x^3+16 x^4-\log ^2\left (\log \left (\frac {2}{2+x}\right )\right )\right )} \, dx\\ &=\log \left (14+63 x+96 x^2+64 x^3+16 x^4-\log ^2\left (\log \left (\frac {2}{2+x}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 42, normalized size = 1.75 \begin {gather*} \log \left (16-65 (2+x)+96 (2+x)^2-64 (2+x)^3+16 (2+x)^4-\log ^2\left (\log \left (\frac {2}{2+x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 32, normalized size = 1.33 \begin {gather*} \log \left (-16 \, x^{4} - 64 \, x^{3} - 96 \, x^{2} + \log \left (\log \left (\frac {2}{x + 2}\right )\right )^{2} - 63 \, x - 14\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (64 \, x^{4} + 320 \, x^{3} + 576 \, x^{2} + 447 \, x + 126\right )} \log \left (\frac {2}{x + 2}\right ) + 2 \, \log \left (\log \left (\frac {2}{x + 2}\right )\right )}{{\left (x + 2\right )} \log \left (\frac {2}{x + 2}\right ) \log \left (\log \left (\frac {2}{x + 2}\right )\right )^{2} - {\left (16 \, x^{5} + 96 \, x^{4} + 224 \, x^{3} + 255 \, x^{2} + 140 \, x + 28\right )} \log \left (\frac {2}{x + 2}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {-2 \ln \left (\ln \left (\frac {2}{2+x}\right )\right )+\left (-64 x^{4}-320 x^{3}-576 x^{2}-447 x -126\right ) \ln \left (\frac {2}{2+x}\right )}{\left (2+x \right ) \ln \left (\frac {2}{2+x}\right ) \ln \left (\ln \left (\frac {2}{2+x}\right )\right )^{2}+\left (-16 x^{5}-96 x^{4}-224 x^{3}-255 x^{2}-140 x -28\right ) \ln \left (\frac {2}{2+x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 33, normalized size = 1.38 \begin {gather*} \log \left (-16 \, x^{4} - 64 \, x^{3} - 96 \, x^{2} + \log \left (\log \relax (2) - \log \left (x + 2\right )\right )^{2} - 63 \, x - 14\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.52, size = 32, normalized size = 1.33 \begin {gather*} \ln \left (-16\,x^4-64\,x^3-96\,x^2-63\,x+{\ln \left (\ln \left (\frac {2}{x+2}\right )\right )}^2-14\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.79, size = 31, normalized size = 1.29 \begin {gather*} \log {\left (- 16 x^{4} - 64 x^{3} - 96 x^{2} - 63 x + \log {\left (\log {\left (\frac {2}{x + 2} \right )} \right )}^{2} - 14 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________