Optimal. Leaf size=19 \[ 5-\frac {(1+x) (10+\log (x))}{(-3+x) x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.28, antiderivative size = 64, normalized size of antiderivative = 3.37, number of steps used = 12, number of rules used = 8, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {1594, 27, 6742, 893, 2357, 2314, 31, 2304} \begin {gather*} \frac {10}{3 x^2}+\frac {\log (x)}{3 x^2}+\frac {40}{9 (3-x)}+\frac {40}{9 x}+\frac {4 x \log (x)}{27 (3-x)}+\frac {4 \log (x)}{9 x}+\frac {4 \log (x)}{27} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 31
Rule 893
Rule 1594
Rule 2304
Rule 2314
Rule 2357
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-57+2 x+19 x^2+\left (-6+2 x^2\right ) \log (x)}{x^3 \left (9-6 x+x^2\right )} \, dx\\ &=\int \frac {-57+2 x+19 x^2+\left (-6+2 x^2\right ) \log (x)}{(-3+x)^2 x^3} \, dx\\ &=\int \left (\frac {-57+2 x+19 x^2}{(-3+x)^2 x^3}+\frac {2 \left (-3+x^2\right ) \log (x)}{(-3+x)^2 x^3}\right ) \, dx\\ &=2 \int \frac {\left (-3+x^2\right ) \log (x)}{(-3+x)^2 x^3} \, dx+\int \frac {-57+2 x+19 x^2}{(-3+x)^2 x^3} \, dx\\ &=2 \int \left (\frac {2 \log (x)}{9 (-3+x)^2}-\frac {\log (x)}{3 x^3}-\frac {2 \log (x)}{9 x^2}\right ) \, dx+\int \left (\frac {40}{9 (-3+x)^2}-\frac {4}{27 (-3+x)}-\frac {19}{3 x^3}-\frac {4}{x^2}+\frac {4}{27 x}\right ) \, dx\\ &=\frac {40}{9 (3-x)}+\frac {19}{6 x^2}+\frac {4}{x}-\frac {4}{27} \log (3-x)+\frac {4 \log (x)}{27}+\frac {4}{9} \int \frac {\log (x)}{(-3+x)^2} \, dx-\frac {4}{9} \int \frac {\log (x)}{x^2} \, dx-\frac {2}{3} \int \frac {\log (x)}{x^3} \, dx\\ &=\frac {40}{9 (3-x)}+\frac {10}{3 x^2}+\frac {40}{9 x}-\frac {4}{27} \log (3-x)+\frac {4 \log (x)}{27}+\frac {\log (x)}{3 x^2}+\frac {4 \log (x)}{9 x}+\frac {4 x \log (x)}{27 (3-x)}+\frac {4}{27} \int \frac {1}{-3+x} \, dx\\ &=\frac {40}{9 (3-x)}+\frac {10}{3 x^2}+\frac {40}{9 x}+\frac {4 \log (x)}{27}+\frac {\log (x)}{3 x^2}+\frac {4 \log (x)}{9 x}+\frac {4 x \log (x)}{27 (3-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 0.89 \begin {gather*} -\frac {(1+x) (10+\log (x))}{(-3+x) x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.20, size = 24, normalized size = 1.26 \begin {gather*} -\frac {{\left (x + 1\right )} \log \relax (x) + 10 \, x + 10}{x^{3} - 3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 40, normalized size = 2.11 \begin {gather*} -\frac {1}{9} \, {\left (\frac {4}{x - 3} - \frac {4 \, x + 3}{x^{2}}\right )} \log \relax (x) - \frac {40}{9 \, {\left (x - 3\right )}} + \frac {10 \, {\left (4 \, x + 3\right )}}{9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.26
method | result | size |
norman | \(\frac {-10-10 x -x \ln \relax (x )-\ln \relax (x )}{x^{2} \left (x -3\right )}\) | \(24\) |
risch | \(-\frac {\left (x +1\right ) \ln \relax (x )}{x^{2} \left (x -3\right )}-\frac {10 \left (x +1\right )}{x^{2} \left (x -3\right )}\) | \(30\) |
default | \(\frac {10}{3 x^{2}}+\frac {40}{9 x}+\frac {4 \ln \relax (x )}{27}-\frac {40}{9 \left (x -3\right )}+\frac {4 \ln \relax (x )}{9 x}+\frac {\ln \relax (x )}{3 x^{2}}-\frac {4 \ln \relax (x ) x}{27 \left (x -3\right )}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 93, normalized size = 4.89 \begin {gather*} \frac {24 \, x^{2} - 2 \, {\left (4 \, x^{3} - 12 \, x^{2} + 27 \, x + 27\right )} \log \relax (x) - 63 \, x - 27}{54 \, {\left (x^{3} - 3 \, x^{2}\right )}} + \frac {19 \, {\left (2 \, x^{2} - 3 \, x - 3\right )}}{6 \, {\left (x^{3} - 3 \, x^{2}\right )}} - \frac {2 \, {\left (2 \, x - 3\right )}}{9 \, {\left (x^{2} - 3 \, x\right )}} - \frac {19}{3 \, {\left (x - 3\right )}} + \frac {4}{27} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 17, normalized size = 0.89 \begin {gather*} -\frac {\left (\ln \relax (x)+10\right )\,\left (x+1\right )}{x^2\,\left (x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 31, normalized size = 1.63 \begin {gather*} \frac {- 10 x - 10}{x^{3} - 3 x^{2}} + \frac {\left (- x - 1\right ) \log {\relax (x )}}{x^{3} - 3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________