Optimal. Leaf size=18 \[ x (-1+2 x) (2+x (6+2 x)) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 27, normalized size of antiderivative = 1.50, number of steps used = 7, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {2356, 2295, 2304} \begin {gather*} 4 x^4 \log (x)+10 x^3 \log (x)-2 x^2 \log (x)-2 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2295
Rule 2304
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-2 x-x^2+\frac {10 x^3}{3}+x^4+\int \left (-2-4 x+30 x^2+16 x^3\right ) \log (x) \, dx\\ &=-2 x-x^2+\frac {10 x^3}{3}+x^4+\int \left (-2 \log (x)-4 x \log (x)+30 x^2 \log (x)+16 x^3 \log (x)\right ) \, dx\\ &=-2 x-x^2+\frac {10 x^3}{3}+x^4-2 \int \log (x) \, dx-4 \int x \log (x) \, dx+16 \int x^3 \log (x) \, dx+30 \int x^2 \log (x) \, dx\\ &=-2 x \log (x)-2 x^2 \log (x)+10 x^3 \log (x)+4 x^4 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 27, normalized size = 1.50 \begin {gather*} -2 x \log (x)-2 x^2 \log (x)+10 x^3 \log (x)+4 x^4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 23, normalized size = 1.28 \begin {gather*} 2 \, {\left (2 \, x^{4} + 5 \, x^{3} - x^{2} - x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 27, normalized size = 1.50 \begin {gather*} 4 \, x^{4} \log \relax (x) + 10 \, x^{3} \log \relax (x) - 2 \, x^{2} \log \relax (x) - 2 \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 1.28
method | result | size |
risch | \(\left (4 x^{4}+10 x^{3}-2 x^{2}-2 x \right ) \ln \relax (x )\) | \(23\) |
default | \(4 x^{4} \ln \relax (x )+10 x^{3} \ln \relax (x )-2 x^{2} \ln \relax (x )-2 x \ln \relax (x )\) | \(28\) |
norman | \(4 x^{4} \ln \relax (x )+10 x^{3} \ln \relax (x )-2 x^{2} \ln \relax (x )-2 x \ln \relax (x )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 23, normalized size = 1.28 \begin {gather*} 2 \, {\left (2 \, x^{4} + 5 \, x^{3} - x^{2} - x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.02, size = 18, normalized size = 1.00 \begin {gather*} 2\,x\,\ln \relax (x)\,\left (2\,x-1\right )\,\left (x^2+3\,x+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 20, normalized size = 1.11 \begin {gather*} \left (4 x^{4} + 10 x^{3} - 2 x^{2} - 2 x\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________