Optimal. Leaf size=24 \[ -1-\frac {3}{e^5}+\frac {2}{-e^x+e^{4 x^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 17, normalized size of antiderivative = 0.71, number of steps used = 3, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {2}{e^x-e^{4 x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (e^x-8 e^{4 x^2} x\right )}{\left (e^x-e^{4 x^2}\right )^2} \, dx\\ &=2 \int \frac {e^x-8 e^{4 x^2} x}{\left (e^x-e^{4 x^2}\right )^2} \, dx\\ &=-\frac {2}{e^x-e^{4 x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.71 \begin {gather*} -\frac {2}{e^x-e^{4 x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 27, normalized size = 1.12 \begin {gather*} \frac {2 \, e^{\left (4 \, x^{2}\right )}}{e^{\left (8 \, x^{2}\right )} - e^{\left (4 \, x^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 15, normalized size = 0.62 \begin {gather*} \frac {2}{e^{\left (4 \, x^{2}\right )} - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.67
method | result | size |
norman | \(-\frac {2}{{\mathrm e}^{x}-{\mathrm e}^{4 x^{2}}}\) | \(16\) |
risch | \(-\frac {2}{{\mathrm e}^{x}-{\mathrm e}^{4 x^{2}}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 15, normalized size = 0.62 \begin {gather*} \frac {2}{e^{\left (4 \, x^{2}\right )} - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.71, size = 15, normalized size = 0.62 \begin {gather*} \frac {2}{{\mathrm {e}}^{4\,x^2}-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 10, normalized size = 0.42 \begin {gather*} \frac {2}{- e^{x} + e^{4 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________