Optimal. Leaf size=21 \[ e^{1+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 2.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{1+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} \left (6-10 e^{\frac {3 x^3}{2}}+2 x+\left (2 x-45 e^{\frac {3 x^3}{2}} x^3\right ) \log (x)\right )}{2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{1+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} \left (6-10 e^{\frac {3 x^3}{2}}+2 x+\left (2 x-45 e^{\frac {3 x^3}{2}} x^3\right ) \log (x)\right )}{x} \, dx\\ &=\frac {1}{2} \int \left (\frac {2 e^{1+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} (3+x+x \log (x))}{x}-\frac {5 e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} \left (2+9 x^3 \log (x)\right )}{x}\right ) \, dx\\ &=-\left (\frac {5}{2} \int \frac {e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} \left (2+9 x^3 \log (x)\right )}{x} \, dx\right )+\int \frac {e^{1+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} (3+x+x \log (x))}{x} \, dx\\ &=-\left (\frac {5}{2} \int \left (\frac {2 e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)}}{x}+9 e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} x^2 \log (x)\right ) \, dx\right )+\int e x^{2-5 e^{\frac {3 x^3}{2}}+x} (3+x+x \log (x)) \, dx\\ &=-\left (5 \int \frac {e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)}}{x} \, dx\right )-\frac {45}{2} \int e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} x^2 \log (x) \, dx+e \int x^{2-5 e^{\frac {3 x^3}{2}}+x} (3+x+x \log (x)) \, dx\\ &=-\left (5 \int \frac {e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)}}{x} \, dx\right )-\frac {45}{2} \int e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} x^2 \log (x) \, dx+e \int \left (3 x^{2-5 e^{\frac {3 x^3}{2}}+x}+x^{3-5 e^{\frac {3 x^3}{2}}+x}+x^{3-5 e^{\frac {3 x^3}{2}}+x} \log (x)\right ) \, dx\\ &=-\left (5 \int \frac {e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)}}{x} \, dx\right )-\frac {45}{2} \int e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} x^2 \log (x) \, dx+e \int x^{3-5 e^{\frac {3 x^3}{2}}+x} \, dx+e \int x^{3-5 e^{\frac {3 x^3}{2}}+x} \log (x) \, dx+(3 e) \int x^{2-5 e^{\frac {3 x^3}{2}}+x} \, dx\\ &=-\left (5 \int \frac {e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)}}{x} \, dx\right )-\frac {45}{2} \int e^{1+\frac {3 x^3}{2}+\left (3-5 e^{\frac {3 x^3}{2}}+x\right ) \log (x)} x^2 \log (x) \, dx+e \int x^{3-5 e^{\frac {3 x^3}{2}}+x} \, dx-e \int \frac {\int x^{3-5 e^{\frac {3 x^3}{2}}+x} \, dx}{x} \, dx+(3 e) \int x^{2-5 e^{\frac {3 x^3}{2}}+x} \, dx+(e \log (x)) \int x^{3-5 e^{\frac {3 x^3}{2}}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 18, normalized size = 0.86 \begin {gather*} e x^{3-5 e^{\frac {3 x^3}{2}}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 17, normalized size = 0.81 \begin {gather*} e^{\left ({\left (x - 5 \, e^{\left (\frac {3}{2} \, x^{3}\right )} + 3\right )} \log \relax (x) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 21, normalized size = 1.00 \begin {gather*} e^{\left (x \log \relax (x) - 5 \, e^{\left (\frac {3}{2} \, x^{3}\right )} \log \relax (x) + 3 \, \log \relax (x) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 17, normalized size = 0.81
method | result | size |
risch | \(x^{-5 \,{\mathrm e}^{\frac {3 x^{3}}{2}}+3+x} {\mathrm e}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 21, normalized size = 1.00 \begin {gather*} x^{3} e^{\left (x \log \relax (x) - 5 \, e^{\left (\frac {3}{2} \, x^{3}\right )} \log \relax (x) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 21, normalized size = 1.00 \begin {gather*} \frac {x^x\,x^3\,\mathrm {e}}{x^{5\,{\mathrm {e}}^{\frac {3\,x^3}{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 19, normalized size = 0.90 \begin {gather*} e^{\left (x - 5 e^{\frac {3 x^{3}}{2}} + 3\right ) \log {\relax (x )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________