Optimal. Leaf size=40 \[ \frac {-x+5 \log \left (\frac {x}{3}\right )}{e^x-x-\frac {(3-x) \log ^2\left (3 x^2\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 36.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x^2+e^x \left (5 x-x^2+x^3\right )+\left (5 x^2-5 e^x x^2\right ) \log \left (\frac {x}{3}\right )+\left (-12 x+4 x^2+(60-20 x) \log \left (\frac {x}{3}\right )\right ) \log \left (3 x^2\right )+\left (-15+11 x-x^2-15 \log \left (\frac {x}{3}\right )\right ) \log ^2\left (3 x^2\right )}{e^{2 x} x^2-2 e^x x^3+x^4+\left (6 x^2-2 x^3+e^x \left (-6 x+2 x^2\right )\right ) \log ^2\left (3 x^2\right )+\left (9-6 x+x^2\right ) \log ^4\left (3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-5 x+e^x \left (5-x+x^2\right )\right )+4 (-3+x) x \log \left (3 x^2\right )-\left (15-11 x+x^2\right ) \log ^2\left (3 x^2\right )-5 \log \left (\frac {x}{3}\right ) \left (\left (-1+e^x\right ) x^2+4 (-3+x) \log \left (3 x^2\right )+3 \log ^2\left (3 x^2\right )\right )}{\left (\left (e^x-x\right ) x+(-3+x) \log ^2\left (3 x^2\right )\right )^2} \, dx\\ &=\int \left (-\frac {5-x+x^2-5 x \log \left (\frac {x}{3}\right )}{-e^x x+x^2+3 \log ^2\left (3 x^2\right )-x \log ^2\left (3 x^2\right )}+\frac {\left (x-5 \log \left (\frac {x}{3}\right )\right ) \left (-x^2+x^3-12 \log \left (3 x^2\right )+4 x \log \left (3 x^2\right )+3 \log ^2\left (3 x^2\right )+3 x \log ^2\left (3 x^2\right )-x^2 \log ^2\left (3 x^2\right )\right )}{\left (-e^x x+x^2+3 \log ^2\left (3 x^2\right )-x \log ^2\left (3 x^2\right )\right )^2}\right ) \, dx\\ &=-\int \frac {5-x+x^2-5 x \log \left (\frac {x}{3}\right )}{-e^x x+x^2+3 \log ^2\left (3 x^2\right )-x \log ^2\left (3 x^2\right )} \, dx+\int \frac {\left (x-5 \log \left (\frac {x}{3}\right )\right ) \left (-x^2+x^3-12 \log \left (3 x^2\right )+4 x \log \left (3 x^2\right )+3 \log ^2\left (3 x^2\right )+3 x \log ^2\left (3 x^2\right )-x^2 \log ^2\left (3 x^2\right )\right )}{\left (-e^x x+x^2+3 \log ^2\left (3 x^2\right )-x \log ^2\left (3 x^2\right )\right )^2} \, dx\\ &=\int \frac {\left (x-5 \log \left (\frac {x}{3}\right )\right ) \left ((-1+x) x^2+4 (-3+x) \log \left (3 x^2\right )+\left (3+3 x-x^2\right ) \log ^2\left (3 x^2\right )\right )}{\left (\left (e^x-x\right ) x+(-3+x) \log ^2\left (3 x^2\right )\right )^2} \, dx-\int \left (-\frac {x}{-e^x x+x^2+3 \log ^2\left (3 x^2\right )-x \log ^2\left (3 x^2\right )}+\frac {x^2}{-e^x x+x^2+3 \log ^2\left (3 x^2\right )-x \log ^2\left (3 x^2\right )}-\frac {5 x \log \left (\frac {x}{3}\right )}{-e^x x+x^2+3 \log ^2\left (3 x^2\right )-x \log ^2\left (3 x^2\right )}-\frac {5}{e^x x-x^2-3 \log ^2\left (3 x^2\right )+x \log ^2\left (3 x^2\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 37, normalized size = 0.92 \begin {gather*} \frac {x \left (x-5 \log \left (\frac {x}{3}\right )\right )}{x \left (-e^x+x\right )-(-3+x) \log ^2\left (3 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.32, size = 56, normalized size = 1.40 \begin {gather*} -\frac {x^{2} - 5 \, x \log \left (\frac {1}{3} \, x\right )}{9 \, {\left (x - 3\right )} \log \relax (3)^{2} + 12 \, {\left (x - 3\right )} \log \relax (3) \log \left (\frac {1}{3} \, x\right ) + 4 \, {\left (x - 3\right )} \log \left (\frac {1}{3} \, x\right )^{2} - x^{2} + x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 67.54, size = 492, normalized size = 12.30
method | result | size |
risch | \(\frac {-20 x \ln \relax (x )+20 x \ln \relax (3)+4 x^{2}}{-16 x \ln \relax (3) \ln \relax (x )+12 \ln \relax (3)^{2}+48 \ln \relax (x )^{2}+4 x^{2}-4 x \ln \relax (3)^{2}+48 \ln \relax (3) \ln \relax (x )-16 x \ln \relax (x )^{2}-4 \,{\mathrm e}^{x} x -3 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-12 i \ln \relax (3) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-24 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}-4 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}+6 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}-4 x \,\pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}+8 i x \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+48 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i x \ln \relax (3) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-12 i \ln \relax (3) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+24 i \ln \relax (3) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i x \ln \relax (3) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 i x \ln \relax (3) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+8 i x \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-16 i x \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+12 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{5} \mathrm {csgn}\left (i x \right )-18 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}+12 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )^{3}-3 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{4}+x \,\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-24 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}\) | \(492\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 62, normalized size = 1.55 \begin {gather*} -\frac {x^{2} + 5 \, x \log \relax (3) - 5 \, x \log \relax (x)}{x \log \relax (3)^{2} + 4 \, {\left (x - 3\right )} \log \relax (x)^{2} - x^{2} + x e^{x} - 3 \, \log \relax (3)^{2} + 4 \, {\left (x \log \relax (3) - 3 \, \log \relax (3)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int -\frac {{\ln \left (3\,x^2\right )}^2\,\left (15\,\ln \left (\frac {x}{3}\right )-11\,x+x^2+15\right )+\ln \left (3\,x^2\right )\,\left (12\,x-4\,x^2+\ln \left (\frac {x}{3}\right )\,\left (20\,x-60\right )\right )+\ln \left (\frac {x}{3}\right )\,\left (5\,x^2\,{\mathrm {e}}^x-5\,x^2\right )-{\mathrm {e}}^x\,\left (x^3-x^2+5\,x\right )+5\,x^2}{{\ln \left (3\,x^2\right )}^4\,\left (x^2-6\,x+9\right )-2\,x^3\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^{2\,x}+x^4-{\ln \left (3\,x^2\right )}^2\,\left ({\mathrm {e}}^x\,\left (6\,x-2\,x^2\right )-6\,x^2+2\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.73, size = 75, normalized size = 1.88 \begin {gather*} \frac {- x^{2} + 5 x \log {\left (\frac {x}{3} \right )}}{- x^{2} + x e^{x} + 4 x \log {\left (\frac {x}{3} \right )}^{2} + 12 x \log {\relax (3 )} \log {\left (\frac {x}{3} \right )} + 9 x \log {\relax (3 )}^{2} - 12 \log {\left (\frac {x}{3} \right )}^{2} - 36 \log {\relax (3 )} \log {\left (\frac {x}{3} \right )} - 27 \log {\relax (3 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________