Optimal. Leaf size=24 \[ 4+x+\frac {x}{e^x-x}-(-16+x)^2 x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2-512 x^3+96 x^4-4 x^5+e^{2 x} \left (1-512 x+96 x^2-4 x^3\right )+e^x \left (1-3 x+1024 x^2-192 x^3+8 x^4\right )}{e^{2 x}-2 e^x x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2-512 x^3+96 x^4-4 x^5+e^{2 x} \left (1-512 x+96 x^2-4 x^3\right )+e^x \left (1-3 x+1024 x^2-192 x^3+8 x^4\right )}{\left (e^x-x\right )^2} \, dx\\ &=\int \left (1-512 x-\frac {(-1+x) x}{\left (e^x-x\right )^2}+96 x^2-4 x^3+\frac {-1+x}{-e^x+x}\right ) \, dx\\ &=x-256 x^2+32 x^3-x^4-\int \frac {(-1+x) x}{\left (e^x-x\right )^2} \, dx+\int \frac {-1+x}{-e^x+x} \, dx\\ &=x-256 x^2+32 x^3-x^4-\int \left (-\frac {x}{\left (e^x-x\right )^2}+\frac {x^2}{\left (e^x-x\right )^2}\right ) \, dx+\int \left (\frac {1}{e^x-x}+\frac {x}{-e^x+x}\right ) \, dx\\ &=x-256 x^2+32 x^3-x^4+\int \frac {1}{e^x-x} \, dx+\int \frac {x}{\left (e^x-x\right )^2} \, dx-\int \frac {x^2}{\left (e^x-x\right )^2} \, dx+\int \frac {x}{-e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 28, normalized size = 1.17 \begin {gather*} x+\frac {x}{e^x-x}-256 x^2+32 x^3-x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.80, size = 51, normalized size = 2.12 \begin {gather*} -\frac {x^{5} - 32 \, x^{4} + 256 \, x^{3} - x^{2} - {\left (x^{4} - 32 \, x^{3} + 256 \, x^{2} - x\right )} e^{x} + x}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 55, normalized size = 2.29 \begin {gather*} -\frac {x^{5} - x^{4} e^{x} - 32 \, x^{4} + 32 \, x^{3} e^{x} + 256 \, x^{3} - 256 \, x^{2} e^{x} - x^{2} + x e^{x} + x}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 29, normalized size = 1.21
method | result | size |
risch | \(-x^{4}+32 x^{3}-256 x^{2}+x -\frac {x}{x -{\mathrm e}^{x}}\) | \(29\) |
norman | \(\frac {x^{2}-x +{\mathrm e}^{x} x^{4}-256 x^{3}+32 x^{4}-x^{5}-{\mathrm e}^{x} x +256 \,{\mathrm e}^{x} x^{2}-32 \,{\mathrm e}^{x} x^{3}}{x -{\mathrm e}^{x}}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 51, normalized size = 2.12 \begin {gather*} -\frac {x^{5} - 32 \, x^{4} + 256 \, x^{3} - x^{2} - {\left (x^{4} - 32 \, x^{3} + 256 \, x^{2} - x\right )} e^{x} + x}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.63, size = 28, normalized size = 1.17 \begin {gather*} x-\frac {x}{x-{\mathrm {e}}^x}-256\,x^2+32\,x^3-x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 20, normalized size = 0.83 \begin {gather*} - x^{4} + 32 x^{3} - 256 x^{2} + x + \frac {x}{- x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________