Optimal. Leaf size=26 \[ \frac {e^4 \left (1+\frac {x (3+x)}{-2+x}\right )^4}{\left (1+x+x^2\right )^4} \]
________________________________________________________________________________________
Rubi [B] time = 0.83, antiderivative size = 197, normalized size of antiderivative = 7.58, number of steps used = 23, number of rules used = 6, integrand size = 124, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 2074, 638, 614, 618, 204} \begin {gather*} \frac {162 e^4 (2722-3085 x)}{117649 \left (x^2+x+1\right )^2}+\frac {250560 e^4 (2 x+1)}{117649 \left (x^2+x+1\right )}-\frac {960 e^4 (4168 x+2039)}{823543 \left (x^2+x+1\right )}+\frac {53595 e^4 (2 x+1)}{16807 \left (x^2+x+1\right )^2}-\frac {648 e^4 (19-577 x)}{16807 \left (x^2+x+1\right )^3}-\frac {3159 e^4 (2 x+1)}{343 \left (x^2+x+1\right )^3}+\frac {729 e^4 (16-39 x)}{2401 \left (x^2+x+1\right )^4}-\frac {493440 e^4}{823543 (2-x)}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {24000 e^4}{16807 (2-x)^3}+\frac {10000 e^4}{2401 (2-x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 614
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^4 \int \frac {320-1664 x+1536 x^2+4032 x^3-6720 x^4+1248 x^5+912 x^6-1008 x^7-516 x^8-80 x^9-4 x^{10}}{-32-80 x-160 x^2-120 x^3-50 x^4+119 x^5+95 x^6+75 x^7-60 x^8-25 x^9-31 x^{10}+25 x^{11}+5 x^{13}-5 x^{14}+x^{15}} \, dx\\ &=e^4 \int \left (-\frac {40000}{2401 (-2+x)^5}-\frac {72000}{16807 (-2+x)^4}+\frac {364800}{117649 (-2+x)^3}-\frac {493440}{823543 (-2+x)^2}-\frac {2916 (94+71 x)}{2401 \left (1+x+x^2\right )^5}+\frac {5832 (391+205 x)}{16807 \left (1+x+x^2\right )^4}-\frac {972 (2964+2843 x)}{117649 \left (1+x+x^2\right )^3}-\frac {2880 (2099+30 x)}{823543 \left (1+x+x^2\right )^2}+\frac {493440}{823543 \left (1+x+x^2\right )}\right ) \, dx\\ &=\frac {10000 e^4}{2401 (2-x)^4}-\frac {24000 e^4}{16807 (2-x)^3}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {493440 e^4}{823543 (2-x)}-\frac {\left (2880 e^4\right ) \int \frac {2099+30 x}{\left (1+x+x^2\right )^2} \, dx}{823543}-\frac {\left (972 e^4\right ) \int \frac {2964+2843 x}{\left (1+x+x^2\right )^3} \, dx}{117649}+\frac {\left (5832 e^4\right ) \int \frac {391+205 x}{\left (1+x+x^2\right )^4} \, dx}{16807}+\frac {\left (493440 e^4\right ) \int \frac {1}{1+x+x^2} \, dx}{823543}-\frac {\left (2916 e^4\right ) \int \frac {94+71 x}{\left (1+x+x^2\right )^5} \, dx}{2401}\\ &=\frac {10000 e^4}{2401 (2-x)^4}-\frac {24000 e^4}{16807 (2-x)^3}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {493440 e^4}{823543 (2-x)}+\frac {729 e^4 (16-39 x)}{2401 \left (1+x+x^2\right )^4}-\frac {648 e^4 (19-577 x)}{16807 \left (1+x+x^2\right )^3}+\frac {162 e^4 (2722-3085 x)}{117649 \left (1+x+x^2\right )^2}-\frac {960 e^4 (2039+4168 x)}{823543 \left (1+x+x^2\right )}-\frac {\left (986880 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )}{823543}-\frac {\left (4001280 e^4\right ) \int \frac {1}{1+x+x^2} \, dx}{823543}-\frac {\left (1499310 e^4\right ) \int \frac {1}{\left (1+x+x^2\right )^2} \, dx}{117649}-\frac {1}{343} \left (28431 e^4\right ) \int \frac {1}{\left (1+x+x^2\right )^4} \, dx+\frac {\left (1869480 e^4\right ) \int \frac {1}{\left (1+x+x^2\right )^3} \, dx}{16807}\\ &=\frac {10000 e^4}{2401 (2-x)^4}-\frac {24000 e^4}{16807 (2-x)^3}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {493440 e^4}{823543 (2-x)}+\frac {729 e^4 (16-39 x)}{2401 \left (1+x+x^2\right )^4}-\frac {648 e^4 (19-577 x)}{16807 \left (1+x+x^2\right )^3}-\frac {3159 e^4 (1+2 x)}{343 \left (1+x+x^2\right )^3}+\frac {162 e^4 (2722-3085 x)}{117649 \left (1+x+x^2\right )^2}+\frac {311580 e^4 (1+2 x)}{16807 \left (1+x+x^2\right )^2}-\frac {499770 e^4 (1+2 x)}{117649 \left (1+x+x^2\right )}-\frac {960 e^4 (2039+4168 x)}{823543 \left (1+x+x^2\right )}+\frac {328960 \sqrt {3} e^4 \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{823543}-\frac {\left (999540 e^4\right ) \int \frac {1}{1+x+x^2} \, dx}{117649}+\frac {\left (8002560 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )}{823543}-\frac {1}{343} \left (31590 e^4\right ) \int \frac {1}{\left (1+x+x^2\right )^3} \, dx+\frac {\left (1869480 e^4\right ) \int \frac {1}{\left (1+x+x^2\right )^2} \, dx}{16807}\\ &=\frac {10000 e^4}{2401 (2-x)^4}-\frac {24000 e^4}{16807 (2-x)^3}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {493440 e^4}{823543 (2-x)}+\frac {729 e^4 (16-39 x)}{2401 \left (1+x+x^2\right )^4}-\frac {648 e^4 (19-577 x)}{16807 \left (1+x+x^2\right )^3}-\frac {3159 e^4 (1+2 x)}{343 \left (1+x+x^2\right )^3}+\frac {162 e^4 (2722-3085 x)}{117649 \left (1+x+x^2\right )^2}+\frac {53595 e^4 (1+2 x)}{16807 \left (1+x+x^2\right )^2}+\frac {3862350 e^4 (1+2 x)}{117649 \left (1+x+x^2\right )}-\frac {960 e^4 (2039+4168 x)}{823543 \left (1+x+x^2\right )}-\frac {334080 \sqrt {3} e^4 \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{117649}+\frac {\left (1999080 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )}{117649}+\frac {\left (1246320 e^4\right ) \int \frac {1}{1+x+x^2} \, dx}{16807}-\frac {1}{343} \left (31590 e^4\right ) \int \frac {1}{\left (1+x+x^2\right )^2} \, dx\\ &=\frac {10000 e^4}{2401 (2-x)^4}-\frac {24000 e^4}{16807 (2-x)^3}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {493440 e^4}{823543 (2-x)}+\frac {729 e^4 (16-39 x)}{2401 \left (1+x+x^2\right )^4}-\frac {648 e^4 (19-577 x)}{16807 \left (1+x+x^2\right )^3}-\frac {3159 e^4 (1+2 x)}{343 \left (1+x+x^2\right )^3}+\frac {162 e^4 (2722-3085 x)}{117649 \left (1+x+x^2\right )^2}+\frac {53595 e^4 (1+2 x)}{16807 \left (1+x+x^2\right )^2}+\frac {250560 e^4 (1+2 x)}{117649 \left (1+x+x^2\right )}-\frac {960 e^4 (2039+4168 x)}{823543 \left (1+x+x^2\right )}-\frac {142920 \sqrt {3} e^4 \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{16807}-\frac {1}{343} \left (21060 e^4\right ) \int \frac {1}{1+x+x^2} \, dx-\frac {\left (2492640 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )}{16807}\\ &=\frac {10000 e^4}{2401 (2-x)^4}-\frac {24000 e^4}{16807 (2-x)^3}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {493440 e^4}{823543 (2-x)}+\frac {729 e^4 (16-39 x)}{2401 \left (1+x+x^2\right )^4}-\frac {648 e^4 (19-577 x)}{16807 \left (1+x+x^2\right )^3}-\frac {3159 e^4 (1+2 x)}{343 \left (1+x+x^2\right )^3}+\frac {162 e^4 (2722-3085 x)}{117649 \left (1+x+x^2\right )^2}+\frac {53595 e^4 (1+2 x)}{16807 \left (1+x+x^2\right )^2}+\frac {250560 e^4 (1+2 x)}{117649 \left (1+x+x^2\right )}-\frac {960 e^4 (2039+4168 x)}{823543 \left (1+x+x^2\right )}+\frac {14040}{343} \sqrt {3} e^4 \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )+\frac {1}{343} \left (42120 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=\frac {10000 e^4}{2401 (2-x)^4}-\frac {24000 e^4}{16807 (2-x)^3}-\frac {182400 e^4}{117649 (2-x)^2}-\frac {493440 e^4}{823543 (2-x)}+\frac {729 e^4 (16-39 x)}{2401 \left (1+x+x^2\right )^4}-\frac {648 e^4 (19-577 x)}{16807 \left (1+x+x^2\right )^3}-\frac {3159 e^4 (1+2 x)}{343 \left (1+x+x^2\right )^3}+\frac {162 e^4 (2722-3085 x)}{117649 \left (1+x+x^2\right )^2}+\frac {53595 e^4 (1+2 x)}{16807 \left (1+x+x^2\right )^2}+\frac {250560 e^4 (1+2 x)}{117649 \left (1+x+x^2\right )}-\frac {960 e^4 (2039+4168 x)}{823543 \left (1+x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 27, normalized size = 1.04 \begin {gather*} \frac {e^4 \left (-2+4 x+x^2\right )^4}{\left (2+x+x^2-x^3\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.35, size = 94, normalized size = 3.62 \begin {gather*} \frac {{\left (x^{8} + 16 \, x^{7} + 88 \, x^{6} + 160 \, x^{5} - 104 \, x^{4} - 320 \, x^{3} + 352 \, x^{2} - 128 \, x + 16\right )} e^{4}}{x^{12} - 4 \, x^{11} + 2 \, x^{10} + 19 \, x^{8} - 8 \, x^{7} - 14 \, x^{6} - 44 \, x^{5} + x^{4} + 24 \, x^{3} + 56 \, x^{2} + 32 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 56, normalized size = 2.15 \begin {gather*} \frac {{\left (x^{8} + 16 \, x^{7} + 88 \, x^{6} + 160 \, x^{5} - 104 \, x^{4} - 320 \, x^{3} + 352 \, x^{2} - 128 \, x + 16\right )} e^{4}}{{\left (x^{3} - x^{2} - x - 2\right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.13, size = 81, normalized size = 3.12
method | result | size |
default | \(4 \,{\mathrm e}^{4} \left (\frac {2500}{2401 \left (x -2\right )^{4}}+\frac {6000}{16807 \left (x -2\right )^{3}}-\frac {45600}{117649 \left (x -2\right )^{2}}+\frac {123360}{823543 \left (x -2\right )}+\frac {-\frac {123360}{823543} x^{7}-\frac {420960}{823543} x^{6}-\frac {454320}{823543} x^{5}+\frac {4545543}{3294172} x^{4}+\frac {3863418}{823543} x^{3}+\frac {461016}{117649} x^{2}-\frac {678192}{823543} x +\frac {330522}{823543}}{\left (x^{2}+x +1\right )^{4}}\right )\) | \(81\) |
norman | \(\frac {160 x^{5} {\mathrm e}^{4}+88 x^{6} {\mathrm e}^{4}+16 x^{7} {\mathrm e}^{4}-104 x^{4} {\mathrm e}^{4}+x^{8} {\mathrm e}^{4}-320 x^{3} {\mathrm e}^{4}-128 x \,{\mathrm e}^{4}+352 x^{2} {\mathrm e}^{4}+16 \,{\mathrm e}^{4}}{\left (x^{3}-x^{2}-x -2\right )^{4}}\) | \(93\) |
risch | \(\frac {\left (x^{8}+16 x^{7}+88 x^{6}+160 x^{5}-104 x^{4}-320 x^{3}+352 x^{2}-128 x +16\right ) {\mathrm e}^{4}}{x^{12}-4 x^{11}+2 x^{10}+19 x^{8}-8 x^{7}-14 x^{6}-44 x^{5}+x^{4}+24 x^{3}+56 x^{2}+32 x +16}\) | \(95\) |
gosper | \(\frac {\left (x^{8}+16 x^{7}+88 x^{6}+160 x^{5}-104 x^{4}-320 x^{3}+352 x^{2}-128 x +16\right ) {\mathrm e}^{4}}{x^{12}-4 x^{11}+2 x^{10}+19 x^{8}-8 x^{7}-14 x^{6}-44 x^{5}+x^{4}+24 x^{3}+56 x^{2}+32 x +16}\) | \(97\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 94, normalized size = 3.62 \begin {gather*} \frac {{\left (x^{8} + 16 \, x^{7} + 88 \, x^{6} + 160 \, x^{5} - 104 \, x^{4} - 320 \, x^{3} + 352 \, x^{2} - 128 \, x + 16\right )} e^{4}}{x^{12} - 4 \, x^{11} + 2 \, x^{10} + 19 \, x^{8} - 8 \, x^{7} - 14 \, x^{6} - 44 \, x^{5} + x^{4} + 24 \, x^{3} + 56 \, x^{2} + 32 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 111, normalized size = 4.27 \begin {gather*} \frac {493440\,{\mathrm {e}}^4}{823543\,\left (x-2\right )}-\frac {182400\,{\mathrm {e}}^4}{117649\,{\left (x-2\right )}^2}+\frac {24000\,{\mathrm {e}}^4}{16807\,{\left (x-2\right )}^3}+\frac {10000\,{\mathrm {e}}^4}{2401\,{\left (x-2\right )}^4}-\frac {729\,{\mathrm {e}}^4\,\left (39\,x-16\right )}{2401\,{\left (x^2+x+1\right )}^4}-\frac {1920\,{\mathrm {e}}^4\,\left (257\,x+106\right )}{823543\,\left (x^2+x+1\right )}+\frac {81\,{\mathrm {e}}^4\,\left (794\,x-2063\right )}{16807\,{\left (x^2+x+1\right )}^3}+\frac {27\,{\mathrm {e}}^4\,\left (9280\,x+30227\right )}{117649\,{\left (x^2+x+1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.02, size = 122, normalized size = 4.69 \begin {gather*} - \frac {- x^{8} e^{4} - 16 x^{7} e^{4} - 88 x^{6} e^{4} - 160 x^{5} e^{4} + 104 x^{4} e^{4} + 320 x^{3} e^{4} - 352 x^{2} e^{4} + 128 x e^{4} - 16 e^{4}}{x^{12} - 4 x^{11} + 2 x^{10} + 19 x^{8} - 8 x^{7} - 14 x^{6} - 44 x^{5} + x^{4} + 24 x^{3} + 56 x^{2} + 32 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________