Optimal. Leaf size=24 \[ \frac {x}{-\frac {19}{4}+\frac {3+x}{2}+\log \left (8+x-x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {416+68 x-84 x^2+\left (-128-16 x+16 x^2\right ) \log \left (8+x-x^2\right )}{-1352+247 x+189 x^2-56 x^3+4 x^4+\left (832-24 x-120 x^2+16 x^3\right ) \log \left (8+x-x^2\right )+\left (-128-16 x+16 x^2\right ) \log ^2\left (8+x-x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-416-68 x+84 x^2-16 \left (-8-x+x^2\right ) \log \left (8+x-x^2\right )}{\left (8+x-x^2\right ) \left (13-2 x-4 \log \left (8+x-x^2\right )\right )^2} \, dx\\ &=\int \left (-\frac {8 x \left (-10+3 x+x^2\right )}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}+\frac {4}{-13+2 x+4 \log \left (8+x-x^2\right )}\right ) \, dx\\ &=4 \int \frac {1}{-13+2 x+4 \log \left (8+x-x^2\right )} \, dx-8 \int \frac {x \left (-10+3 x+x^2\right )}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx\\ &=4 \int \frac {1}{-13+2 x+4 \log \left (8+x-x^2\right )} \, dx-8 \int \left (\frac {4}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}+\frac {x}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}+\frac {2 (16+x)}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}\right ) \, dx\\ &=4 \int \frac {1}{-13+2 x+4 \log \left (8+x-x^2\right )} \, dx-8 \int \frac {x}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-16 \int \frac {16+x}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-32 \int \frac {1}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx\\ &=4 \int \frac {1}{-13+2 x+4 \log \left (8+x-x^2\right )} \, dx-8 \int \frac {x}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-16 \int \left (\frac {16}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}+\frac {x}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}\right ) \, dx-32 \int \frac {1}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx\\ &=4 \int \frac {1}{-13+2 x+4 \log \left (8+x-x^2\right )} \, dx-8 \int \frac {x}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-16 \int \frac {x}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-32 \int \frac {1}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-256 \int \frac {1}{\left (-8-x+x^2\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx\\ &=4 \int \frac {1}{-13+2 x+4 \log \left (8+x-x^2\right )} \, dx-8 \int \frac {x}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-16 \int \left (\frac {1+\frac {1}{\sqrt {33}}}{\left (-1-\sqrt {33}+2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}+\frac {1-\frac {1}{\sqrt {33}}}{\left (-1+\sqrt {33}+2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}\right ) \, dx-32 \int \frac {1}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-256 \int \left (-\frac {2}{\sqrt {33} \left (1+\sqrt {33}-2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}-\frac {2}{\sqrt {33} \left (-1+\sqrt {33}+2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2}\right ) \, dx\\ &=4 \int \frac {1}{-13+2 x+4 \log \left (8+x-x^2\right )} \, dx-8 \int \frac {x}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-32 \int \frac {1}{\left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx+\frac {512 \int \frac {1}{\left (1+\sqrt {33}-2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx}{\sqrt {33}}+\frac {512 \int \frac {1}{\left (-1+\sqrt {33}+2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx}{\sqrt {33}}-\frac {1}{33} \left (16 \left (33-\sqrt {33}\right )\right ) \int \frac {1}{\left (-1+\sqrt {33}+2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx-\frac {1}{33} \left (16 \left (33+\sqrt {33}\right )\right ) \int \frac {1}{\left (-1-\sqrt {33}+2 x\right ) \left (-13+2 x+4 \log \left (8+x-x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.20, size = 21, normalized size = 0.88 \begin {gather*} \frac {4 x}{-13+2 x+4 \log \left (8+x-x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 21, normalized size = 0.88 \begin {gather*} \frac {4 \, x}{2 \, x + 4 \, \log \left (-x^{2} + x + 8\right ) - 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.57, size = 21, normalized size = 0.88 \begin {gather*} \frac {4 \, x}{2 \, x + 4 \, \log \left (-x^{2} + x + 8\right ) - 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.92
method | result | size |
risch | \(\frac {4 x}{4 \ln \left (-x^{2}+x +8\right )+2 x -13}\) | \(22\) |
norman | \(\frac {-8 \ln \left (-x^{2}+x +8\right )+26}{4 \ln \left (-x^{2}+x +8\right )+2 x -13}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 21, normalized size = 0.88 \begin {gather*} \frac {4 \, x}{2 \, x + 4 \, \log \left (-x^{2} + x + 8\right ) - 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.94, size = 21, normalized size = 0.88 \begin {gather*} \frac {4\,x}{2\,x+4\,\ln \left (-x^2+x+8\right )-13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 15, normalized size = 0.62 \begin {gather*} \frac {x}{\frac {x}{2} + \log {\left (- x^{2} + x + 8 \right )} - \frac {13}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________