Optimal. Leaf size=27 \[ 3+e^5-\frac {3}{-3 e^{-e^2+x}+\frac {2}{x^2}}+x \]
________________________________________________________________________________________
Rubi [F] time = 2.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 e^2-2 x} (4-12 x)+9 x^4+e^{e^2-x} \left (-12 x^2-9 x^4\right )}{4 e^{2 e^2-2 x}-12 e^{e^2-x} x^2+9 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (e^{2 e^2-2 x} (4-12 x)+9 x^4+e^{e^2-x} \left (-12 x^2-9 x^4\right )\right )}{\left (2 e^{e^2}-3 e^x x^2\right )^2} \, dx\\ &=\int \left (1-3 x-\frac {9}{4} e^{-e^2+x} x^3 (4+x)-\frac {27 e^{-e^2+2 x} x^5 (4+x)}{4 \left (2 e^{e^2}-3 e^x x^2\right )}-\frac {27 e^{2 x} x^5 (2+x)}{2 \left (-2 e^{e^2}+3 e^x x^2\right )^2}\right ) \, dx\\ &=x-\frac {3 x^2}{2}-\frac {9}{4} \int e^{-e^2+x} x^3 (4+x) \, dx-\frac {27}{4} \int \frac {e^{-e^2+2 x} x^5 (4+x)}{2 e^{e^2}-3 e^x x^2} \, dx-\frac {27}{2} \int \frac {e^{2 x} x^5 (2+x)}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx\\ &=x-\frac {3 x^2}{2}-\frac {9}{4} \int \left (4 e^{-e^2+x} x^3+e^{-e^2+x} x^4\right ) \, dx-\frac {27}{4} \int \left (-\frac {4 e^{-e^2+2 x} x^5}{-2 e^{e^2}+3 e^x x^2}-\frac {e^{-e^2+2 x} x^6}{-2 e^{e^2}+3 e^x x^2}\right ) \, dx-\frac {27}{2} \int \left (\frac {2 e^{2 x} x^5}{\left (-2 e^{e^2}+3 e^x x^2\right )^2}+\frac {e^{2 x} x^6}{\left (-2 e^{e^2}+3 e^x x^2\right )^2}\right ) \, dx\\ &=x-\frac {3 x^2}{2}-\frac {9}{4} \int e^{-e^2+x} x^4 \, dx+\frac {27}{4} \int \frac {e^{-e^2+2 x} x^6}{-2 e^{e^2}+3 e^x x^2} \, dx-9 \int e^{-e^2+x} x^3 \, dx-\frac {27}{2} \int \frac {e^{2 x} x^6}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx-27 \int \frac {e^{2 x} x^5}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx+27 \int \frac {e^{-e^2+2 x} x^5}{-2 e^{e^2}+3 e^x x^2} \, dx\\ &=x-\frac {3 x^2}{2}-9 e^{-e^2+x} x^3-\frac {9}{4} e^{-e^2+x} x^4+\frac {27}{4} \int \frac {e^{-e^2+2 x} x^6}{-2 e^{e^2}+3 e^x x^2} \, dx+9 \int e^{-e^2+x} x^3 \, dx-\frac {27}{2} \int \frac {e^{2 x} x^6}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx+27 \int e^{-e^2+x} x^2 \, dx-27 \int \frac {e^{2 x} x^5}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx+27 \int \frac {e^{-e^2+2 x} x^5}{-2 e^{e^2}+3 e^x x^2} \, dx\\ &=x-\frac {3 x^2}{2}+27 e^{-e^2+x} x^2-\frac {9}{4} e^{-e^2+x} x^4+\frac {27}{4} \int \frac {e^{-e^2+2 x} x^6}{-2 e^{e^2}+3 e^x x^2} \, dx-\frac {27}{2} \int \frac {e^{2 x} x^6}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx-27 \int e^{-e^2+x} x^2 \, dx-27 \int \frac {e^{2 x} x^5}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx+27 \int \frac {e^{-e^2+2 x} x^5}{-2 e^{e^2}+3 e^x x^2} \, dx-54 \int e^{-e^2+x} x \, dx\\ &=x-54 e^{-e^2+x} x-\frac {3 x^2}{2}-\frac {9}{4} e^{-e^2+x} x^4+\frac {27}{4} \int \frac {e^{-e^2+2 x} x^6}{-2 e^{e^2}+3 e^x x^2} \, dx-\frac {27}{2} \int \frac {e^{2 x} x^6}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx-27 \int \frac {e^{2 x} x^5}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx+27 \int \frac {e^{-e^2+2 x} x^5}{-2 e^{e^2}+3 e^x x^2} \, dx+54 \int e^{-e^2+x} \, dx+54 \int e^{-e^2+x} x \, dx\\ &=54 e^{-e^2+x}+x-\frac {3 x^2}{2}-\frac {9}{4} e^{-e^2+x} x^4+\frac {27}{4} \int \frac {e^{-e^2+2 x} x^6}{-2 e^{e^2}+3 e^x x^2} \, dx-\frac {27}{2} \int \frac {e^{2 x} x^6}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx-27 \int \frac {e^{2 x} x^5}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx+27 \int \frac {e^{-e^2+2 x} x^5}{-2 e^{e^2}+3 e^x x^2} \, dx-54 \int e^{-e^2+x} \, dx\\ &=x-\frac {3 x^2}{2}-\frac {9}{4} e^{-e^2+x} x^4+\frac {27}{4} \int \frac {e^{-e^2+2 x} x^6}{-2 e^{e^2}+3 e^x x^2} \, dx-\frac {27}{2} \int \frac {e^{2 x} x^6}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx-27 \int \frac {e^{2 x} x^5}{\left (-2 e^{e^2}+3 e^x x^2\right )^2} \, dx+27 \int \frac {e^{-e^2+2 x} x^5}{-2 e^{e^2}+3 e^x x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 30, normalized size = 1.11 \begin {gather*} x+\frac {3 e^{e^2} x^2}{-2 e^{e^2}+3 e^x x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.29, size = 41, normalized size = 1.52 \begin {gather*} \frac {3 \, x^{3} + {\left (3 \, x^{2} - 2 \, x\right )} e^{\left (-x + e^{2}\right )}}{3 \, x^{2} - 2 \, e^{\left (-x + e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 162, normalized size = 6.00 \begin {gather*} \frac {9 \, x^{6} e^{x} + 9 \, x^{5} e^{x} + 9 \, x^{5} e^{\left (e^{2}\right )} - 18 \, x^{4} e^{x} + 6 \, x^{4} e^{\left (e^{2}\right )} - 6 \, x^{3} e^{\left (-x + 2 \, e^{2}\right )} - 12 \, x^{3} e^{\left (e^{2}\right )} - 8 \, x^{2} e^{\left (-x + 2 \, e^{2}\right )} + 24 \, x^{2} e^{\left (e^{2}\right )} + 4 \, x e^{\left (-x + 2 \, e^{2}\right )} - 8 \, e^{\left (-x + 2 \, e^{2}\right )}}{9 \, x^{5} e^{x} + 18 \, x^{4} e^{x} - 12 \, x^{3} e^{\left (e^{2}\right )} - 24 \, x^{2} e^{\left (e^{2}\right )} + 4 \, x e^{\left (-x + 2 \, e^{2}\right )} + 8 \, e^{\left (-x + 2 \, e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 30, normalized size = 1.11
method | result | size |
risch | \(-\frac {3 x^{2}}{2}+x +\frac {9 x^{4}}{2 \left (3 x^{2}-2 \,{\mathrm e}^{{\mathrm e}^{2}-x}\right )}\) | \(30\) |
norman | \(\frac {3 x^{3}-2 x \,{\mathrm e}^{{\mathrm e}^{2}-x}+3 x^{2} {\mathrm e}^{{\mathrm e}^{2}-x}}{3 x^{2}-2 \,{\mathrm e}^{{\mathrm e}^{2}-x}}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 38, normalized size = 1.41 \begin {gather*} \frac {3 \, x^{3} e^{x} + 3 \, x^{2} e^{\left (e^{2}\right )} - 2 \, x e^{\left (e^{2}\right )}}{3 \, x^{2} e^{x} - 2 \, e^{\left (e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.11, size = 29, normalized size = 1.07 \begin {gather*} x-\frac {9\,x^4}{2\,\left (2\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^2}-3\,x^2\right )}-\frac {3\,x^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 0.96 \begin {gather*} - \frac {9 x^{4}}{- 6 x^{2} + 4 e^{- x + e^{2}}} - \frac {3 x^{2}}{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________