Optimal. Leaf size=34 \[ 3+\left (3-e^{\frac {e^x}{3}+2 x}+x (3+x)\right ) \left (x+3 \left (-3+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{3} \left (-72+18 x+90 x^2+36 x^3+e^{\frac {1}{3} \left (e^x+6 x\right )} \left (51-24 x-18 x^2+e^x \left (9-x-3 x^2\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (-72+18 x+90 x^2+36 x^3+e^{\frac {1}{3} \left (e^x+6 x\right )} \left (51-24 x-18 x^2+e^x \left (9-x-3 x^2\right )\right )\right ) \, dx\\ &=-24 x+3 x^2+10 x^3+3 x^4+\frac {1}{3} \int e^{\frac {1}{3} \left (e^x+6 x\right )} \left (51-24 x-18 x^2+e^x \left (9-x-3 x^2\right )\right ) \, dx\\ &=-24 x+3 x^2+10 x^3+3 x^4+\frac {1}{3} \int \left (51 e^{\frac {1}{3} \left (e^x+6 x\right )}-24 e^{\frac {1}{3} \left (e^x+6 x\right )} x-18 e^{\frac {1}{3} \left (e^x+6 x\right )} x^2-e^{x+\frac {1}{3} \left (e^x+6 x\right )} \left (-9+x+3 x^2\right )\right ) \, dx\\ &=-24 x+3 x^2+10 x^3+3 x^4-\frac {1}{3} \int e^{x+\frac {1}{3} \left (e^x+6 x\right )} \left (-9+x+3 x^2\right ) \, dx-6 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x^2 \, dx-8 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x \, dx+17 \int e^{\frac {1}{3} \left (e^x+6 x\right )} \, dx\\ &=-24 x+3 x^2+10 x^3+3 x^4-\frac {1}{3} \int e^{\frac {1}{3} \left (e^x+9 x\right )} \left (-9+x+3 x^2\right ) \, dx-6 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x^2 \, dx-8 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x \, dx+17 \int e^{\frac {1}{3} \left (e^x+6 x\right )} \, dx\\ &=-24 x+3 x^2+10 x^3+3 x^4-\frac {1}{3} \int \left (-9 e^{\frac {1}{3} \left (e^x+9 x\right )}+e^{\frac {1}{3} \left (e^x+9 x\right )} x+3 e^{\frac {1}{3} \left (e^x+9 x\right )} x^2\right ) \, dx-6 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x^2 \, dx-8 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x \, dx+17 \int e^{\frac {1}{3} \left (e^x+6 x\right )} \, dx\\ &=-24 x+3 x^2+10 x^3+3 x^4-\frac {1}{3} \int e^{\frac {1}{3} \left (e^x+9 x\right )} x \, dx+3 \int e^{\frac {1}{3} \left (e^x+9 x\right )} \, dx-6 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x^2 \, dx-8 \int e^{\frac {1}{3} \left (e^x+6 x\right )} x \, dx+17 \int e^{\frac {1}{3} \left (e^x+6 x\right )} \, dx-\int e^{\frac {1}{3} \left (e^x+9 x\right )} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 42, normalized size = 1.24 \begin {gather*} -24 x+3 x^2+10 x^3+3 x^4-e^{\frac {e^x}{3}+2 x} \left (-9+x+3 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 38, normalized size = 1.12 \begin {gather*} 3 \, x^{4} + 10 \, x^{3} + 3 \, x^{2} - {\left (3 \, x^{2} + x - 9\right )} e^{\left (2 \, x + \frac {1}{3} \, e^{x}\right )} - 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.11, size = 56, normalized size = 1.65 \begin {gather*} 3 \, x^{4} + 10 \, x^{3} - 3 \, x^{2} e^{\left (2 \, x + \frac {1}{3} \, e^{x}\right )} + 3 \, x^{2} - x e^{\left (2 \, x + \frac {1}{3} \, e^{x}\right )} - 24 \, x + 9 \, e^{\left (2 \, x + \frac {1}{3} \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 41, normalized size = 1.21
method | result | size |
risch | \(\frac {\left (-9 x^{2}-3 x +27\right ) {\mathrm e}^{\frac {{\mathrm e}^{x}}{3}+2 x}}{3}+3 x^{4}+10 x^{3}+3 x^{2}-24 x\) | \(41\) |
default | \(3 x^{4}+10 x^{3}+3 x^{2}-24 x -{\mathrm e}^{\frac {{\mathrm e}^{x}}{3}+2 x} x -3 \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{3}+2 x} x^{2}+9 \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{3}+2 x}\) | \(57\) |
norman | \(3 x^{4}+10 x^{3}+3 x^{2}-24 x -{\mathrm e}^{\frac {{\mathrm e}^{x}}{3}+2 x} x -3 \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{3}+2 x} x^{2}+9 \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{3}+2 x}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 38, normalized size = 1.12 \begin {gather*} 3 \, x^{4} + 10 \, x^{3} + 3 \, x^{2} - {\left (3 \, x^{2} + x - 9\right )} e^{\left (2 \, x + \frac {1}{3} \, e^{x}\right )} - 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.34, size = 56, normalized size = 1.65 \begin {gather*} 9\,{\mathrm {e}}^{2\,x+\frac {{\mathrm {e}}^x}{3}}-24\,x-3\,x^2\,{\mathrm {e}}^{2\,x+\frac {{\mathrm {e}}^x}{3}}-x\,{\mathrm {e}}^{2\,x+\frac {{\mathrm {e}}^x}{3}}+3\,x^2+10\,x^3+3\,x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 36, normalized size = 1.06 \begin {gather*} 3 x^{4} + 10 x^{3} + 3 x^{2} - 24 x + \left (- 3 x^{2} - x + 9\right ) e^{2 x + \frac {e^{x}}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________