Optimal. Leaf size=22 \[ \frac {5}{\log \left (x+\frac {3-2 x+\log (2)}{-2+\log (\log (x))}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15-10 x+5 \log (2)-40 x \log (x)+30 x \log (x) \log (\log (x))-5 x \log (x) \log ^2(\log (x))}{\left (\left (-6 x+8 x^2-2 x \log (2)\right ) \log (x)+\left (3 x-6 x^2+x \log (2)\right ) \log (x) \log (\log (x))+x^2 \log (x) \log ^2(\log (x))\right ) \log ^2\left (\frac {3-4 x+\log (2)+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-2 x+3 \left (1+\frac {\log (2)}{3}\right )-8 x \log (x)+6 x \log (x) \log (\log (x))-x \log (x) \log ^2(\log (x))\right )}{x \log (x) (2-\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx\\ &=5 \int \frac {-2 x+3 \left (1+\frac {\log (2)}{3}\right )-8 x \log (x)+6 x \log (x) \log (\log (x))-x \log (x) \log ^2(\log (x))}{x \log (x) (2-\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx\\ &=5 \int \left (\frac {3+\log (2)}{x \log (x) (2-\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )}+\frac {8}{(-2+\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )}+\frac {2}{\log (x) (-2+\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )}+\frac {6 \log (\log (x))}{(2-\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )}+\frac {\log ^2(\log (x))}{(-2+\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )}\right ) \, dx\\ &=5 \int \frac {\log ^2(\log (x))}{(-2+\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx+10 \int \frac {1}{\log (x) (-2+\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx+30 \int \frac {\log (\log (x))}{(2-\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx+40 \int \frac {1}{(-2+\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx+(5 (3+\log (2))) \int \frac {1}{x \log (x) (2-\log (\log (x))) \left (4 x-3 \left (1+\frac {\log (2)}{3}\right )-x \log (\log (x))\right ) \log ^2\left (\frac {-4 x+3 \left (1+\frac {\log (2)}{3}\right )+x \log (\log (x))}{-2+\log (\log (x))}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 25, normalized size = 1.14 \begin {gather*} \frac {5}{\log \left (\frac {3-4 x+\log (2)+x \log (\log (x))}{-2+\log (\log (x))}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 25, normalized size = 1.14 \begin {gather*} \frac {5}{\log \left (\frac {x \log \left (\log \relax (x)\right ) - 4 \, x + \log \relax (2) + 3}{\log \left (\log \relax (x)\right ) - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.84, size = 26, normalized size = 1.18 \begin {gather*} \frac {5}{\log \left (x \log \left (\log \relax (x)\right ) - 4 \, x + \log \relax (2) + 3\right ) - \log \left (\log \left (\log \relax (x)\right ) - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.39, size = 187, normalized size = 8.50
method | result | size |
risch | \(\frac {10 i}{\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \relax (x )\right )-2}\right ) \mathrm {csgn}\left (i \left (\left (\ln \left (\ln \relax (x )\right )-4\right ) x +3+\ln \relax (2)\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \left (\ln \relax (x )\right )-4\right ) x +3+\ln \relax (2)\right )}{\ln \left (\ln \relax (x )\right )-2}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \relax (x )\right )-2}\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \left (\ln \relax (x )\right )-4\right ) x +3+\ln \relax (2)\right )}{\ln \left (\ln \relax (x )\right )-2}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (\left (\ln \left (\ln \relax (x )\right )-4\right ) x +3+\ln \relax (2)\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \left (\ln \relax (x )\right )-4\right ) x +3+\ln \relax (2)\right )}{\ln \left (\ln \relax (x )\right )-2}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\left (\ln \left (\ln \relax (x )\right )-4\right ) x +3+\ln \relax (2)\right )}{\ln \left (\ln \relax (x )\right )-2}\right )^{3}-2 i \ln \left (\ln \left (\ln \relax (x )\right )-2\right )+2 i \ln \left (\left (\ln \left (\ln \relax (x )\right )-4\right ) x +3+\ln \relax (2)\right )}\) | \(187\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 26, normalized size = 1.18 \begin {gather*} \frac {5}{\log \left (x \log \left (\log \relax (x)\right ) - 4 \, x + \log \relax (2) + 3\right ) - \log \left (\log \left (\log \relax (x)\right ) - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 12.10, size = 141, normalized size = 6.41 \begin {gather*} \frac {\left (\ln \left (\ln \relax (x)\right )-2\right )\,\left (\ln \relax (2)-4\,x+x\,\ln \left (\ln \relax (x)\right )+3\right )\,\left (5\,x\,\ln \relax (x)\,{\ln \left (\ln \relax (x)\right )}^2-30\,x\,\ln \relax (x)\,\ln \left (\ln \relax (x)\right )+10\,x-\ln \left (32\right )+40\,x\,\ln \relax (x)-15\right )}{\ln \left (\frac {\ln \relax (2)-4\,x+x\,\ln \left (\ln \relax (x)\right )+3}{\ln \left (\ln \relax (x)\right )-2}\right )\,\left (x\,\ln \relax (x)\,{\ln \left (\ln \relax (x)\right )}^2-6\,x\,\ln \relax (x)\,\ln \left (\ln \relax (x)\right )+2\,x-\ln \relax (2)+8\,x\,\ln \relax (x)-3\right )\,\left (8\,x+3\,\ln \left (\ln \relax (x)\right )-\ln \relax (4)+\ln \left (\ln \relax (x)\right )\,\ln \relax (2)-6\,x\,\ln \left (\ln \relax (x)\right )+x\,{\ln \left (\ln \relax (x)\right )}^2-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.64, size = 24, normalized size = 1.09 \begin {gather*} \frac {5}{\log {\left (\frac {x \log {\left (\log {\relax (x )} \right )} - 4 x + \log {\relax (2 )} + 3}{\log {\left (\log {\relax (x )} \right )} - 2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________