Optimal. Leaf size=21 \[ -\frac {6}{-1-\frac {e^8}{4}+e^x+x-\log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 19, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 3, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {6688, 12, 6686} \begin {gather*} \frac {24}{-4 x-4 e^x+e^8+4+\log (256)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {96 \left (1+e^x\right )}{\left (4 e^x+4 x-4 \left (1+\frac {e^8}{4}+\log (4)\right )\right )^2} \, dx\\ &=96 \int \frac {1+e^x}{\left (4 e^x+4 x-4 \left (1+\frac {e^8}{4}+\log (4)\right )\right )^2} \, dx\\ &=\frac {24}{4+e^8-4 e^x-4 x+\log (256)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 19, normalized size = 0.90 \begin {gather*} \frac {24}{4+e^8-4 e^x-4 x+\log (256)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 21, normalized size = 1.00 \begin {gather*} -\frac {24}{4 \, x - e^{8} + 4 \, e^{x} - 8 \, \log \relax (2) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.00 \begin {gather*} -\frac {24}{4 \, x - e^{8} + 4 \, e^{x} - 8 \, \log \relax (2) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 20, normalized size = 0.95
method | result | size |
risch | \(\frac {24}{{\mathrm e}^{8}-4 \,{\mathrm e}^{x}+8 \ln \relax (2)-4 x +4}\) | \(20\) |
norman | \(\frac {24}{{\mathrm e}^{8}-4 \,{\mathrm e}^{x}+8 \ln \relax (2)-4 x +4}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 21, normalized size = 1.00 \begin {gather*} -\frac {24}{4 \, x - e^{8} + 4 \, e^{x} - 8 \, \log \relax (2) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.56, size = 35, normalized size = 1.67 \begin {gather*} \frac {96\,\left (\frac {{\mathrm {e}}^8}{4}+\frac {\ln \left (256\right )}{4}+1\right )}{\left ({\mathrm {e}}^8+\ln \left (256\right )+4\right )\,\left ({\mathrm {e}}^8-4\,x+\ln \left (256\right )-4\,{\mathrm {e}}^x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.95 \begin {gather*} - \frac {24}{4 x + 4 e^{x} - e^{8} - 8 \log {\relax (2 )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________