Optimal. Leaf size=30 \[ \frac {3 \left (-4+e^x\right ) (1+x)}{e^3 \left (5-\frac {8}{e^4+\frac {4}{x}}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.70, antiderivative size = 147, normalized size of antiderivative = 4.90, number of steps used = 14, number of rules used = 9, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6688, 12, 6742, 683, 2199, 2194, 2176, 2177, 2178} \begin {gather*} -\frac {3 e^{x+1} x}{8-5 e^4}+\frac {12 e x}{8-5 e^4}+\frac {96 \left (28-5 e^4\right ) e^{x-3}}{\left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}-\frac {384 \left (28-5 e^4\right )}{e^3 \left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}-\frac {6 \left (16+8 e^4-5 e^8\right ) e^{x-3}}{\left (8-5 e^4\right )^2}+\frac {3 e^{x+1}}{8-5 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 683
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-448+32 e^4 (-5+x) x-20 e^8 x^2+5 e^{8+x} x^2 (2+x)+e^x \left (192+48 x-32 x^2\right )-8 e^{4+x} x \left (-10-3 x+x^2\right )\right )}{e^3 \left (20+\left (-8+5 e^4\right ) x\right )^2} \, dx\\ &=\frac {3 \int \frac {-448+32 e^4 (-5+x) x-20 e^8 x^2+5 e^{8+x} x^2 (2+x)+e^x \left (192+48 x-32 x^2\right )-8 e^{4+x} x \left (-10-3 x+x^2\right )}{\left (20+\left (-8+5 e^4\right ) x\right )^2} \, dx}{e^3}\\ &=\frac {3 \int \left (\frac {4 \left (-112-40 e^4 x+e^4 \left (8-5 e^4\right ) x^2\right )}{\left (20-\left (8-5 e^4\right ) x\right )^2}+\frac {e^x \left (192+16 \left (3+5 e^4\right ) x-2 \left (16-12 e^4-5 e^8\right ) x^2-e^4 \left (8-5 e^4\right ) x^3\right )}{\left (20-\left (8-5 e^4\right ) x\right )^2}\right ) \, dx}{e^3}\\ &=\frac {3 \int \frac {e^x \left (192+16 \left (3+5 e^4\right ) x-2 \left (16-12 e^4-5 e^8\right ) x^2-e^4 \left (8-5 e^4\right ) x^3\right )}{\left (20-\left (8-5 e^4\right ) x\right )^2} \, dx}{e^3}+\frac {12 \int \frac {-112-40 e^4 x+e^4 \left (8-5 e^4\right ) x^2}{\left (20-\left (8-5 e^4\right ) x\right )^2} \, dx}{e^3}\\ &=\frac {3 \int \left (\frac {2 e^x \left (-16-8 e^4+5 e^8\right )}{\left (-8+5 e^4\right )^2}+\frac {e^{4+x} x}{-8+5 e^4}+\frac {32 e^x \left (28-5 e^4\right )}{\left (8-5 e^4\right ) \left (20-\left (8-5 e^4\right ) x\right )^2}+\frac {32 e^x \left (28-5 e^4\right )}{\left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}\right ) \, dx}{e^3}+\frac {12 \int \left (-\frac {e^4}{-8+5 e^4}+\frac {32 \left (-28+5 e^4\right )}{\left (8-5 e^4\right ) \left (20-\left (8-5 e^4\right ) x\right )^2}\right ) \, dx}{e^3}\\ &=\frac {12 e x}{8-5 e^4}-\frac {384 \left (28-5 e^4\right )}{e^3 \left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}-\frac {3 \int e^{4+x} x \, dx}{e^3 \left (8-5 e^4\right )}+\frac {\left (96 \left (28-5 e^4\right )\right ) \int \frac {e^x}{20-\left (8-5 e^4\right ) x} \, dx}{e^3 \left (8-5 e^4\right )^2}+\frac {\left (96 \left (28-5 e^4\right )\right ) \int \frac {e^x}{\left (20-\left (8-5 e^4\right ) x\right )^2} \, dx}{e^3 \left (8-5 e^4\right )}-\frac {\left (6 \left (16+8 e^4-5 e^8\right )\right ) \int e^x \, dx}{e^3 \left (8-5 e^4\right )^2}\\ &=-\frac {6 e^{-3+x} \left (16+8 e^4-5 e^8\right )}{\left (8-5 e^4\right )^2}+\frac {12 e x}{8-5 e^4}-\frac {3 e^{1+x} x}{8-5 e^4}-\frac {384 \left (28-5 e^4\right )}{e^3 \left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}+\frac {96 e^{-3+x} \left (28-5 e^4\right )}{\left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}-\frac {96 e^{-3+\frac {20}{8-5 e^4}} \left (28-5 e^4\right ) \text {Ei}\left (-\frac {20-\left (8-5 e^4\right ) x}{8-5 e^4}\right )}{\left (8-5 e^4\right )^3}+\frac {3 \int e^{4+x} \, dx}{e^3 \left (8-5 e^4\right )}-\frac {\left (96 \left (28-5 e^4\right )\right ) \int \frac {e^x}{20+\left (-8+5 e^4\right ) x} \, dx}{e^3 \left (8-5 e^4\right )^2}\\ &=\frac {3 e^{1+x}}{8-5 e^4}-\frac {6 e^{-3+x} \left (16+8 e^4-5 e^8\right )}{\left (8-5 e^4\right )^2}+\frac {12 e x}{8-5 e^4}-\frac {3 e^{1+x} x}{8-5 e^4}-\frac {384 \left (28-5 e^4\right )}{e^3 \left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}+\frac {96 e^{-3+x} \left (28-5 e^4\right )}{\left (8-5 e^4\right )^2 \left (20-\left (8-5 e^4\right ) x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.37, size = 114, normalized size = 3.80 \begin {gather*} \frac {3 \left (-3584-100 e^{12} x^2+256 e^x (1+x)+25 e^{12+x} x (1+x)+80 e^8 x (-5+4 x)+64 e^{4+x} \left (-5-4 x+x^2\right )-128 e^4 \left (-5-5 x+2 x^2\right )-20 e^{8+x} \left (-5-x+4 x^2\right )\right )}{e^3 \left (8-5 e^4\right )^2 \left (20+\left (-8+5 e^4\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 117, normalized size = 3.90 \begin {gather*} -\frac {3 \, {\left (100 \, x^{2} e^{12} - 80 \, {\left (4 \, x^{2} - 5 \, x\right )} e^{8} + 128 \, {\left (2 \, x^{2} - 5 \, x - 5\right )} e^{4} - {\left (25 \, {\left (x^{2} + x\right )} e^{12} - 20 \, {\left (4 \, x^{2} - x - 5\right )} e^{8} + 64 \, {\left (x^{2} - 4 \, x - 5\right )} e^{4} + 256 \, x + 256\right )} e^{x} + 3584\right )}}{125 \, x e^{15} - 100 \, {\left (6 \, x - 5\right )} e^{11} + 320 \, {\left (3 \, x - 5\right )} e^{7} - 256 \, {\left (2 \, x - 5\right )} e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 237, normalized size = 7.90 \begin {gather*} -\frac {3 \, {\left (2500 \, x^{2} e^{20} - 16000 \, x^{2} e^{16} + 38400 \, x^{2} e^{12} - 40960 \, x^{2} e^{8} + 16384 \, x^{2} e^{4} - 625 \, x^{2} e^{\left (x + 20\right )} + 4000 \, x^{2} e^{\left (x + 16\right )} - 9600 \, x^{2} e^{\left (x + 12\right )} + 10240 \, x^{2} e^{\left (x + 8\right )} - 4096 \, x^{2} e^{\left (x + 4\right )} + 10000 \, x e^{16} - 48000 \, x e^{12} + 76800 \, x e^{8} - 40960 \, x e^{4} - 625 \, x e^{\left (x + 20\right )} + 1500 \, x e^{\left (x + 16\right )} + 6400 \, x e^{\left (x + 12\right )} - 28160 \, x e^{\left (x + 8\right )} + 36864 \, x e^{\left (x + 4\right )} - 16384 \, x e^{x} - 16000 \, e^{12} + 140800 \, e^{8} - 327680 \, e^{4} - 2500 \, e^{\left (x + 16\right )} + 16000 \, e^{\left (x + 12\right )} - 38400 \, e^{\left (x + 8\right )} + 40960 \, e^{\left (x + 4\right )} - 16384 \, e^{x} + 229376\right )}}{3125 \, x e^{23} - 25000 \, x e^{19} + 80000 \, x e^{15} - 128000 \, x e^{11} + 102400 \, x e^{7} - 32768 \, x e^{3} + 12500 \, e^{19} - 80000 \, e^{15} + 192000 \, e^{11} - 204800 \, e^{7} + 81920 \, e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 10.35, size = 67, normalized size = 2.23
method | result | size |
norman | \(\frac {12 \,{\mathrm e}^{-3} {\mathrm e}^{x}-\frac {336 x \,{\mathrm e}^{-3}}{5}-12 \,{\mathrm e}^{-3} {\mathrm e}^{4} x^{2}+3 \left (4+{\mathrm e}^{4}\right ) {\mathrm e}^{-3} x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-3} {\mathrm e}^{4} x^{2} {\mathrm e}^{x}}{5 x \,{\mathrm e}^{4}-8 x +20}\) | \(67\) |
risch | \(-\frac {12 \,{\mathrm e} x}{5 \,{\mathrm e}^{4}-8}+\frac {1920 \,{\mathrm e}^{-3} {\mathrm e}^{4}}{\left (5 \,{\mathrm e}^{4}-8\right )^{2} \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {10752 \,{\mathrm e}^{-3}}{\left (5 \,{\mathrm e}^{4}-8\right )^{2} \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}+\frac {3 \left (x^{2} {\mathrm e}^{4}+x \,{\mathrm e}^{4}+4 x +4\right ) {\mathrm e}^{x -3}}{5 x \,{\mathrm e}^{4}-8 x +20}\) | \(98\) |
default | \(-\frac {336 \,{\mathrm e}^{-3} x}{5 \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {576 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (5 \,{\mathrm e}^{4}-8\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {576 \,{\mathrm e}^{-3} {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (5 \,{\mathrm e}^{4}-8\right )^{2}}+\frac {480 \,{\mathrm e}^{4} {\mathrm e}^{-3} x}{\left (5 \,{\mathrm e}^{4}-8\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {480 \,{\mathrm e}^{-3} {\mathrm e}^{4} \ln \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}{25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64}+\frac {\frac {3840 \,{\mathrm e}^{4} {\mathrm e}^{-3} x}{25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64}+\frac {96 \,{\mathrm e}^{4} {\mathrm e}^{-3} x^{2}}{5 \,{\mathrm e}^{4}-8}}{5 x \,{\mathrm e}^{4}-8 x +20}-\frac {3840 \,{\mathrm e}^{-3} {\mathrm e}^{4} \ln \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}{125 \,{\mathrm e}^{12}-600 \,{\mathrm e}^{8}+960 \,{\mathrm e}^{4}-512}+\frac {-\frac {2400 \,{\mathrm e}^{8} {\mathrm e}^{-3} x}{25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64}-\frac {60 \,{\mathrm e}^{8} {\mathrm e}^{-3} x^{2}}{5 \,{\mathrm e}^{4}-8}}{5 x \,{\mathrm e}^{4}-8 x +20}+\frac {2400 \,{\mathrm e}^{-3} {\mathrm e}^{8} \ln \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}{125 \,{\mathrm e}^{12}-600 \,{\mathrm e}^{8}+960 \,{\mathrm e}^{4}-512}+\frac {2880 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {144 \left (5 \,{\mathrm e}^{4}-28\right ) {\mathrm e}^{-3} {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 \,{\mathrm e}^{4}-8\right )}-\frac {96 \,{\mathrm e}^{x}}{25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}}+\frac {38400 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (5 \,{\mathrm e}^{4}-8\right ) \left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {3840 \left (5 \,{\mathrm e}^{4}-18\right ) {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (5 \,{\mathrm e}^{4}-8\right )^{2} \left (25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}\right )}+240 \,{\mathrm e}^{4} \left (\frac {20 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {\left (5 \,{\mathrm e}^{4}-28\right ) {\mathrm e}^{-3} {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 \,{\mathrm e}^{4}-8\right )}\right )+72 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{x}}{25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}}-\frac {400 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (5 \,{\mathrm e}^{4}-8\right ) \left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}+\frac {40 \left (5 \,{\mathrm e}^{4}-18\right ) {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (5 \,{\mathrm e}^{4}-8\right )^{2} \left (25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}\right )}\right )-24 \,{\mathrm e}^{4} \left (\frac {\left (5 x \,{\mathrm e}^{4}-5 \,{\mathrm e}^{4}-8 x -32\right ) {\mathrm e}^{x}}{\left (25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}\right ) \left (5 \,{\mathrm e}^{4}-8\right )}+\frac {8000 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (5 \,{\mathrm e}^{4}-8\right )^{2} \left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {400 \left (15 \,{\mathrm e}^{4}-44\right ) {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (5 \,{\mathrm e}^{4}-8\right )^{3} \left (25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}\right )}\right )+30 \,{\mathrm e}^{8} \left (\frac {{\mathrm e}^{x}}{25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}}-\frac {400 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (5 \,{\mathrm e}^{4}-8\right ) \left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}+\frac {40 \left (5 \,{\mathrm e}^{4}-18\right ) {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (5 \,{\mathrm e}^{4}-8\right )^{2} \left (25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}\right )}\right )+15 \,{\mathrm e}^{8} \left (\frac {\left (5 x \,{\mathrm e}^{4}-5 \,{\mathrm e}^{4}-8 x -32\right ) {\mathrm e}^{x}}{\left (25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}\right ) \left (5 \,{\mathrm e}^{4}-8\right )}+\frac {8000 \,{\mathrm e}^{x} {\mathrm e}^{-3}}{\left (5 \,{\mathrm e}^{4}-8\right )^{2} \left (25 \,{\mathrm e}^{8}-80 \,{\mathrm e}^{4}+64\right ) \left (5 x \,{\mathrm e}^{4}-8 x +20\right )}-\frac {400 \left (15 \,{\mathrm e}^{4}-44\right ) {\mathrm e}^{-\frac {20}{5 \,{\mathrm e}^{4}-8}} \expIntegralEi \left (1, -x -\frac {20}{5 \,{\mathrm e}^{4}-8}\right )}{\left (5 \,{\mathrm e}^{4}-8\right )^{3} \left (25 \,{\mathrm e}^{3} {\mathrm e}^{8}-80 \,{\mathrm e}^{3} {\mathrm e}^{4}+64 \,{\mathrm e}^{3}\right )}\right )\) | \(1252\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 329, normalized size = 10.97 \begin {gather*} -60 \, {\left (\frac {x}{25 \, e^{11} - 80 \, e^{7} + 64 \, e^{3}} - \frac {40 \, \log \left (x {\left (5 \, e^{4} - 8\right )} + 20\right )}{125 \, e^{15} - 600 \, e^{11} + 960 \, e^{7} - 512 \, e^{3}} - \frac {400}{x {\left (625 \, e^{19} - 4000 \, e^{15} + 9600 \, e^{11} - 10240 \, e^{7} + 4096 \, e^{3}\right )} + 2500 \, e^{15} - 12000 \, e^{11} + 19200 \, e^{7} - 10240 \, e^{3}}\right )} e^{8} + 96 \, {\left (\frac {x}{25 \, e^{11} - 80 \, e^{7} + 64 \, e^{3}} - \frac {40 \, \log \left (x {\left (5 \, e^{4} - 8\right )} + 20\right )}{125 \, e^{15} - 600 \, e^{11} + 960 \, e^{7} - 512 \, e^{3}} - \frac {400}{x {\left (625 \, e^{19} - 4000 \, e^{15} + 9600 \, e^{11} - 10240 \, e^{7} + 4096 \, e^{3}\right )} + 2500 \, e^{15} - 12000 \, e^{11} + 19200 \, e^{7} - 10240 \, e^{3}}\right )} e^{4} - 480 \, {\left (\frac {\log \left (x {\left (5 \, e^{4} - 8\right )} + 20\right )}{25 \, e^{11} - 80 \, e^{7} + 64 \, e^{3}} + \frac {20}{x {\left (125 \, e^{15} - 600 \, e^{11} + 960 \, e^{7} - 512 \, e^{3}\right )} + 500 \, e^{11} - 1600 \, e^{7} + 1280 \, e^{3}}\right )} e^{4} + \frac {3 \, {\left (x^{2} e^{4} + x {\left (e^{4} + 4\right )} + 4\right )} e^{x}}{x {\left (5 \, e^{7} - 8 \, e^{3}\right )} + 20 \, e^{3}} + \frac {1344}{x {\left (25 \, e^{11} - 80 \, e^{7} + 64 \, e^{3}\right )} + 100 \, e^{7} - 160 \, e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.29, size = 130, normalized size = 4.33 \begin {gather*} \frac {384\,\left (5\,{\mathrm {e}}^4-28\right )}{\left (5\,{\mathrm {e}}^4-8\right )\,\left (100\,{\mathrm {e}}^7-160\,{\mathrm {e}}^3+x\,\left (64\,{\mathrm {e}}^3-80\,{\mathrm {e}}^7+25\,{\mathrm {e}}^{11}\right )\right )}-\frac {12\,x\,\mathrm {e}}{5\,{\mathrm {e}}^4-8}-\frac {{\mathrm {e}}^x\,\left (\frac {3\,{\mathrm {e}}^4\,x^2}{8\,{\mathrm {e}}^3-5\,{\mathrm {e}}^7}+\frac {\left (3\,{\mathrm {e}}^4+12\right )\,x}{8\,{\mathrm {e}}^3-5\,{\mathrm {e}}^7}+\frac {12}{8\,{\mathrm {e}}^3-5\,{\mathrm {e}}^7}\right )}{x-\frac {20\,{\mathrm {e}}^3}{8\,{\mathrm {e}}^3-5\,{\mathrm {e}}^7}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.57, size = 99, normalized size = 3.30 \begin {gather*} - \frac {12 e x}{-8 + 5 e^{4}} + \frac {-10752 + 1920 e^{4}}{x \left (- 600 e^{11} - 512 e^{3} + 960 e^{7} + 125 e^{15}\right ) - 1600 e^{7} + 1280 e^{3} + 500 e^{11}} + \frac {\left (3 x^{2} e^{4} + 12 x + 3 x e^{4} + 12\right ) e^{x}}{- 8 x e^{3} + 5 x e^{7} + 20 e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________