Optimal. Leaf size=26 \[ \frac {4 \left (-11+x^2+\frac {x-\log (x)}{5+x+\log (4)}\right )}{3 x} \]
________________________________________________________________________________________
Rubi [B] time = 0.80, antiderivative size = 273, normalized size of antiderivative = 10.50, number of steps used = 18, number of rules used = 10, integrand size = 104, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.096, Rules used = {6, 6688, 12, 6742, 43, 44, 2357, 2304, 2314, 31} \begin {gather*} \frac {4 x}{3}-\frac {4 \left (35+\log ^2(4)+10 \log (4)\right )}{3 (x+5+\log (4))}-\frac {4 x \log (x)}{3 (5+\log (4))^2 (x+5+\log (4))}-\frac {8 (270+(109+22 \log (2)) \log (4)) \log (x)}{3 (5+\log (4))^3}+\frac {4 (109+22 \log (4)) \log (x)}{3 (5+\log (4))^2}+\frac {8 (270+(109+22 \log (2)) \log (4)) \log (x+5+\log (4))}{3 (5+\log (4))^3}-\frac {4 (109+22 \log (4)) \log (x+5+\log (4))}{3 (5+\log (4))^2}+\frac {4 \log (x+5+\log (4))}{3 (5+\log (4))^2}+\frac {4 (5+\log (4))^2}{3 (x+5+\log (4))}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 (5+\log (4))^2 (x+5+\log (4))}+\frac {4 (109+22 \log (4))}{3 (5+\log (4)) (x+5+\log (4))}-\frac {4 \log (x)}{3 x (5+\log (4))}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 x (5+\log (4))^2}-\frac {4}{3 x (5+\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 31
Rule 43
Rule 44
Rule 2304
Rule 2314
Rule 2357
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1080+436 x+140 x^2+40 x^3+4 x^4+\left (436+88 x+40 x^2+8 x^3\right ) \log (4)+\left (44+4 x^2\right ) \log ^2(4)+(20+8 x+4 \log (4)) \log (x)}{30 x^3+3 x^4+\left (30 x^2+6 x^3\right ) \log (4)+x^2 \left (75+3 \log ^2(4)\right )} \, dx\\ &=\int \frac {4 \left (x^4+2 x^3 (5+\log (4))+x (109+22 \log (4))+270 \left (1+\frac {1}{270} (109+22 \log (2)) \log (4)\right )+x^2 \left (35+10 \log (4)+\log ^2(4)\right )+(5+2 x+\log (4)) \log (x)\right )}{3 x^2 (5+x+\log (4))^2} \, dx\\ &=\frac {4}{3} \int \frac {x^4+2 x^3 (5+\log (4))+x (109+22 \log (4))+270 \left (1+\frac {1}{270} (109+22 \log (2)) \log (4)\right )+x^2 \left (35+10 \log (4)+\log ^2(4)\right )+(5+2 x+\log (4)) \log (x)}{x^2 (5+x+\log (4))^2} \, dx\\ &=\frac {4}{3} \int \left (\frac {x^2}{(5+x+\log (4))^2}+\frac {2 x (5+\log (4))}{(5+x+\log (4))^2}+\frac {109+22 \log (4)}{x (5+x+\log (4))^2}+\frac {270+(109+22 \log (2)) \log (4)}{x^2 (5+x+\log (4))^2}+\frac {35+10 \log (4)+\log ^2(4)}{(5+x+\log (4))^2}+\frac {(5+2 x+\log (4)) \log (x)}{x^2 (5+x+\log (4))^2}\right ) \, dx\\ &=-\frac {4 \left (35+10 \log (4)+\log ^2(4)\right )}{3 (5+x+\log (4))}+\frac {4}{3} \int \frac {x^2}{(5+x+\log (4))^2} \, dx+\frac {4}{3} \int \frac {(5+2 x+\log (4)) \log (x)}{x^2 (5+x+\log (4))^2} \, dx+\frac {1}{3} (8 (5+\log (4))) \int \frac {x}{(5+x+\log (4))^2} \, dx+\frac {1}{3} (4 (109+22 \log (4))) \int \frac {1}{x (5+x+\log (4))^2} \, dx+\frac {1}{3} (4 (270+(109+22 \log (2)) \log (4))) \int \frac {1}{x^2 (5+x+\log (4))^2} \, dx\\ &=-\frac {4 \left (35+10 \log (4)+\log ^2(4)\right )}{3 (5+x+\log (4))}+\frac {4}{3} \int \left (1+\frac {(5+\log (4))^2}{(5+x+\log (4))^2}-\frac {2 (5+\log (4))}{5+x+\log (4)}\right ) \, dx+\frac {4}{3} \int \left (\frac {\log (x)}{x^2 (5+\log (4))}-\frac {\log (x)}{(5+\log (4)) (5+x+\log (4))^2}\right ) \, dx+\frac {1}{3} (8 (5+\log (4))) \int \left (\frac {-5-\log (4)}{(5+x+\log (4))^2}+\frac {1}{5+x+\log (4)}\right ) \, dx+\frac {1}{3} (4 (109+22 \log (4))) \int \left (\frac {1}{x (5+\log (4))^2}-\frac {1}{(5+\log (4)) (5+x+\log (4))^2}-\frac {1}{(5+\log (4))^2 (5+x+\log (4))}\right ) \, dx+\frac {1}{3} (4 (270+(109+22 \log (2)) \log (4))) \int \left (-\frac {2}{x (5+\log (4))^3}+\frac {1}{x^2 (5+\log (4))^2}+\frac {1}{(5+\log (4))^2 (5+x+\log (4))^2}+\frac {2}{(5+\log (4))^3 (5+x+\log (4))}\right ) \, dx\\ &=\frac {4 x}{3}+\frac {4 (5+\log (4))^2}{3 (5+x+\log (4))}+\frac {4 (109+22 \log (4))}{3 (5+\log (4)) (5+x+\log (4))}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 x (5+\log (4))^2}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 (5+\log (4))^2 (5+x+\log (4))}-\frac {4 \left (35+10 \log (4)+\log ^2(4)\right )}{3 (5+x+\log (4))}+\frac {4 (109+22 \log (4)) \log (x)}{3 (5+\log (4))^2}-\frac {8 (270+(109+22 \log (2)) \log (4)) \log (x)}{3 (5+\log (4))^3}-\frac {4 (109+22 \log (4)) \log (5+x+\log (4))}{3 (5+\log (4))^2}+\frac {8 (270+(109+22 \log (2)) \log (4)) \log (5+x+\log (4))}{3 (5+\log (4))^3}+\frac {4 \int \frac {\log (x)}{x^2} \, dx}{3 (5+\log (4))}-\frac {4 \int \frac {\log (x)}{(5+x+\log (4))^2} \, dx}{3 (5+\log (4))}\\ &=\frac {4 x}{3}-\frac {4}{3 x (5+\log (4))}+\frac {4 (5+\log (4))^2}{3 (5+x+\log (4))}+\frac {4 (109+22 \log (4))}{3 (5+\log (4)) (5+x+\log (4))}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 x (5+\log (4))^2}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 (5+\log (4))^2 (5+x+\log (4))}-\frac {4 \left (35+10 \log (4)+\log ^2(4)\right )}{3 (5+x+\log (4))}-\frac {4 \log (x)}{3 x (5+\log (4))}-\frac {4 x \log (x)}{3 (5+\log (4))^2 (5+x+\log (4))}+\frac {4 (109+22 \log (4)) \log (x)}{3 (5+\log (4))^2}-\frac {8 (270+(109+22 \log (2)) \log (4)) \log (x)}{3 (5+\log (4))^3}-\frac {4 (109+22 \log (4)) \log (5+x+\log (4))}{3 (5+\log (4))^2}+\frac {8 (270+(109+22 \log (2)) \log (4)) \log (5+x+\log (4))}{3 (5+\log (4))^3}+\frac {4 \int \frac {1}{5+x+\log (4)} \, dx}{3 (5+\log (4))^2}\\ &=\frac {4 x}{3}-\frac {4}{3 x (5+\log (4))}+\frac {4 (5+\log (4))^2}{3 (5+x+\log (4))}+\frac {4 (109+22 \log (4))}{3 (5+\log (4)) (5+x+\log (4))}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 x (5+\log (4))^2}-\frac {4 (270+(109+22 \log (2)) \log (4))}{3 (5+\log (4))^2 (5+x+\log (4))}-\frac {4 \left (35+10 \log (4)+\log ^2(4)\right )}{3 (5+x+\log (4))}-\frac {4 \log (x)}{3 x (5+\log (4))}-\frac {4 x \log (x)}{3 (5+\log (4))^2 (5+x+\log (4))}+\frac {4 (109+22 \log (4)) \log (x)}{3 (5+\log (4))^2}-\frac {8 (270+(109+22 \log (2)) \log (4)) \log (x)}{3 (5+\log (4))^3}+\frac {4 \log (5+x+\log (4))}{3 (5+\log (4))^2}-\frac {4 (109+22 \log (4)) \log (5+x+\log (4))}{3 (5+\log (4))^2}+\frac {8 (270+(109+22 \log (2)) \log (4)) \log (5+x+\log (4))}{3 (5+\log (4))^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.36, size = 75, normalized size = 2.88 \begin {gather*} \frac {4 \left (x^3 (5+\log (4))^2-11 (5+\log (4))^3+x^2 (5+\log (4))^3+x \left (-250+\log ^2(4)-2 \log (4) (50+\log (2048))\right )-(5+\log (4))^2 \log (x)\right )}{3 x (5+\log (4))^2 (5+x+\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 42, normalized size = 1.62 \begin {gather*} \frac {4 \, {\left (x^{3} + 5 \, x^{2} + 2 \, {\left (x^{2} - 11\right )} \log \relax (2) - 10 \, x - \log \relax (x) - 55\right )}}{3 \, {\left (x^{2} + 2 \, x \log \relax (2) + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 60, normalized size = 2.31 \begin {gather*} \frac {4}{3} \, {\left (\frac {1}{2 \, x \log \relax (2) + 4 \, \log \relax (2)^{2} + 5 \, x + 20 \, \log \relax (2) + 25} - \frac {1}{2 \, x \log \relax (2) + 5 \, x}\right )} \log \relax (x) + \frac {4}{3} \, x + \frac {4}{3 \, {\left (x + 2 \, \log \relax (2) + 5\right )}} - \frac {44}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 43, normalized size = 1.65
method | result | size |
norman | \(\frac {\left (-\frac {16 \ln \relax (2)^{2}}{3}-\frac {80 \ln \relax (2)}{3}-\frac {140}{3}\right ) x +\frac {4 x^{3}}{3}-\frac {220}{3}-\frac {4 \ln \relax (x )}{3}-\frac {88 \ln \relax (2)}{3}}{x \left (2 \ln \relax (2)+5+x \right )}\) | \(43\) |
risch | \(-\frac {4 \ln \relax (x )}{3 \left (2 \ln \relax (2)+5+x \right ) x}+\frac {\frac {8 x^{2} \ln \relax (2)}{3}+\frac {4 x^{3}}{3}+\frac {20 x^{2}}{3}-\frac {88 \ln \relax (2)}{3}-\frac {40 x}{3}-\frac {220}{3}}{x \left (2 \ln \relax (2)+5+x \right )}\) | \(56\) |
default | \(\frac {4 x}{3}+\frac {4}{3 \left (2 \ln \relax (2)+5+x \right )}+\frac {4 \ln \relax (x )}{3 \left (2 \ln \relax (2)+5\right )^{2}}-\frac {88 \ln \relax (2)}{3 \left (2 \ln \relax (2)+5\right ) x}-\frac {220}{3 \left (2 \ln \relax (2)+5\right ) x}-\frac {4 \ln \relax (x )}{3 \left (2 \ln \relax (2)+5\right ) x}-\frac {4 \ln \relax (x ) x}{3 \left (2 \ln \relax (2)+5\right )^{2} \left (2 \ln \relax (2)+5+x \right )}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 683, normalized size = 26.27 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {436\,x+\ln \relax (x)\,\left (8\,x+8\,\ln \relax (2)+20\right )+2\,\ln \relax (2)\,\left (8\,x^3+40\,x^2+88\,x+436\right )+4\,{\ln \relax (2)}^2\,\left (4\,x^2+44\right )+140\,x^2+40\,x^3+4\,x^4+1080}{12\,x^2\,{\ln \relax (2)}^2+2\,\ln \relax (2)\,\left (6\,x^3+30\,x^2\right )+75\,x^2+30\,x^3+3\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 49, normalized size = 1.88 \begin {gather*} \frac {4 x}{3} - \frac {4 \log {\relax (x )}}{3 x^{2} + 6 x \log {\relax (2 )} + 15 x} + \frac {- 40 x - 220 - 88 \log {\relax (2 )}}{3 x^{2} + x \left (6 \log {\relax (2 )} + 15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________