Optimal. Leaf size=25 \[ \frac {3}{16} \left (\frac {1}{4}-x\right ) x \left (e^2 x-\log (\log (x))\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 \left (-6 x+24 x^2\right )+e^4 \left (9 x^2-48 x^3\right ) \log (x)+\left (6-24 x+e^2 \left (-12 x+72 x^2\right ) \log (x)\right ) \log (\log (x))+(3-24 x) \log (x) \log ^2(\log (x))}{64 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{64} \int \frac {e^2 \left (-6 x+24 x^2\right )+e^4 \left (9 x^2-48 x^3\right ) \log (x)+\left (6-24 x+e^2 \left (-12 x+72 x^2\right ) \log (x)\right ) \log (\log (x))+(3-24 x) \log (x) \log ^2(\log (x))}{\log (x)} \, dx\\ &=\frac {1}{64} \int \frac {3 \left (e^2 x-\log (\log (x))\right ) \left (-2+8 x-\log (x) \left (e^2 x (-3+16 x)+(1-8 x) \log (\log (x))\right )\right )}{\log (x)} \, dx\\ &=\frac {3}{64} \int \frac {\left (e^2 x-\log (\log (x))\right ) \left (-2+8 x-\log (x) \left (e^2 x (-3+16 x)+(1-8 x) \log (\log (x))\right )\right )}{\log (x)} \, dx\\ &=\frac {3}{64} \int \left (-\frac {e^2 x \left (2-8 x-3 e^2 x \log (x)+16 e^2 x^2 \log (x)\right )}{\log (x)}+\frac {2 \left (1-4 x-2 e^2 x \log (x)+12 e^2 x^2 \log (x)\right ) \log (\log (x))}{\log (x)}-(-1+8 x) \log ^2(\log (x))\right ) \, dx\\ &=-\left (\frac {3}{64} \int (-1+8 x) \log ^2(\log (x)) \, dx\right )+\frac {3}{32} \int \frac {\left (1-4 x-2 e^2 x \log (x)+12 e^2 x^2 \log (x)\right ) \log (\log (x))}{\log (x)} \, dx-\frac {1}{64} \left (3 e^2\right ) \int \frac {x \left (2-8 x-3 e^2 x \log (x)+16 e^2 x^2 \log (x)\right )}{\log (x)} \, dx\\ &=-\left (\frac {3}{64} \int \left (-\log ^2(\log (x))+8 x \log ^2(\log (x))\right ) \, dx\right )+\frac {3}{32} \int \left (-2 e^2 x \log (\log (x))+12 e^2 x^2 \log (\log (x))+\frac {\log (\log (x))}{\log (x)}-\frac {4 x \log (\log (x))}{\log (x)}\right ) \, dx-\frac {1}{64} \left (3 e^2\right ) \int \frac {x \left (2-8 x+e^2 x (-3+16 x) \log (x)\right )}{\log (x)} \, dx\\ &=\frac {3}{64} \int \log ^2(\log (x)) \, dx+\frac {3}{32} \int \frac {\log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int \frac {x \log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int x \log ^2(\log (x)) \, dx-\frac {1}{64} \left (3 e^2\right ) \int \left (e^2 x^2 (-3+16 x)-\frac {2 x (-1+4 x)}{\log (x)}\right ) \, dx-\frac {1}{16} \left (3 e^2\right ) \int x \log (\log (x)) \, dx+\frac {1}{8} \left (9 e^2\right ) \int x^2 \log (\log (x)) \, dx\\ &=-\frac {3}{32} e^2 x^2 \log (\log (x))+\frac {3}{8} e^2 x^3 \log (\log (x))+\frac {3}{64} \int \log ^2(\log (x)) \, dx+\frac {3}{32} \int \frac {\log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int \frac {x \log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int x \log ^2(\log (x)) \, dx+\frac {1}{32} \left (3 e^2\right ) \int \frac {x}{\log (x)} \, dx+\frac {1}{32} \left (3 e^2\right ) \int \frac {x (-1+4 x)}{\log (x)} \, dx-\frac {1}{8} \left (3 e^2\right ) \int \frac {x^2}{\log (x)} \, dx-\frac {1}{64} \left (3 e^4\right ) \int x^2 (-3+16 x) \, dx\\ &=-\frac {3}{32} e^2 x^2 \log (\log (x))+\frac {3}{8} e^2 x^3 \log (\log (x))+\frac {3}{64} \int \log ^2(\log (x)) \, dx+\frac {3}{32} \int \frac {\log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int \frac {x \log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int x \log ^2(\log (x)) \, dx+\frac {1}{32} \left (3 e^2\right ) \int \left (-\frac {x}{\log (x)}+\frac {4 x^2}{\log (x)}\right ) \, dx+\frac {1}{32} \left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-\frac {1}{8} \left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )-\frac {1}{64} \left (3 e^4\right ) \int \left (-3 x^2+16 x^3\right ) \, dx\\ &=\frac {3 e^4 x^3}{64}-\frac {3 e^4 x^4}{16}+\frac {3}{32} e^2 \text {Ei}(2 \log (x))-\frac {3}{8} e^2 \text {Ei}(3 \log (x))-\frac {3}{32} e^2 x^2 \log (\log (x))+\frac {3}{8} e^2 x^3 \log (\log (x))+\frac {3}{64} \int \log ^2(\log (x)) \, dx+\frac {3}{32} \int \frac {\log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int \frac {x \log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int x \log ^2(\log (x)) \, dx-\frac {1}{32} \left (3 e^2\right ) \int \frac {x}{\log (x)} \, dx+\frac {1}{8} \left (3 e^2\right ) \int \frac {x^2}{\log (x)} \, dx\\ &=\frac {3 e^4 x^3}{64}-\frac {3 e^4 x^4}{16}+\frac {3}{32} e^2 \text {Ei}(2 \log (x))-\frac {3}{8} e^2 \text {Ei}(3 \log (x))-\frac {3}{32} e^2 x^2 \log (\log (x))+\frac {3}{8} e^2 x^3 \log (\log (x))+\frac {3}{64} \int \log ^2(\log (x)) \, dx+\frac {3}{32} \int \frac {\log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int \frac {x \log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int x \log ^2(\log (x)) \, dx-\frac {1}{32} \left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+\frac {1}{8} \left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {3 e^4 x^3}{64}-\frac {3 e^4 x^4}{16}-\frac {3}{32} e^2 x^2 \log (\log (x))+\frac {3}{8} e^2 x^3 \log (\log (x))+\frac {3}{64} \int \log ^2(\log (x)) \, dx+\frac {3}{32} \int \frac {\log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int \frac {x \log (\log (x))}{\log (x)} \, dx-\frac {3}{8} \int x \log ^2(\log (x)) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 22, normalized size = 0.88 \begin {gather*} -\frac {3}{64} x (-1+4 x) \left (-e^2 x+\log (\log (x))\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 50, normalized size = 2.00 \begin {gather*} \frac {3}{32} \, {\left (4 \, x^{3} - x^{2}\right )} e^{2} \log \left (\log \relax (x)\right ) - \frac {3}{64} \, {\left (4 \, x^{2} - x\right )} \log \left (\log \relax (x)\right )^{2} - \frac {3}{64} \, {\left (4 \, x^{4} - x^{3}\right )} e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 53, normalized size = 2.12 \begin {gather*} -\frac {3}{16} \, x^{4} e^{4} + \frac {3}{8} \, x^{3} e^{2} \log \left (\log \relax (x)\right ) + \frac {3}{64} \, x^{3} e^{4} - \frac {3}{32} \, x^{2} e^{2} \log \left (\log \relax (x)\right ) - \frac {3}{16} \, x^{2} \log \left (\log \relax (x)\right )^{2} + \frac {3}{64} \, x \log \left (\log \relax (x)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 45, normalized size = 1.80
method | result | size |
risch | \(\frac {\left (-12 x^{2}+3 x \right ) \ln \left (\ln \relax (x )\right )^{2}}{64}+\frac {3 \,{\mathrm e}^{2} x^{2} \left (4 x -1\right ) \ln \left (\ln \relax (x )\right )}{32}-\frac {3 \,{\mathrm e}^{4} x^{3} \left (4 x -1\right )}{64}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.44, size = 87, normalized size = 3.48 \begin {gather*} -\frac {3}{16} \, x^{4} e^{4} + \frac {3}{64} \, x^{3} e^{4} - \frac {3}{64} \, {\left (4 \, x^{2} - x\right )} \log \left (\log \relax (x)\right )^{2} + \frac {3}{8} \, {\left (x^{3} \log \left (\log \relax (x)\right ) - {\rm Ei}\left (3 \, \log \relax (x)\right )\right )} e^{2} - \frac {3}{32} \, {\left (x^{2} \log \left (\log \relax (x)\right ) - {\rm Ei}\left (2 \, \log \relax (x)\right )\right )} e^{2} + \frac {3}{8} \, {\rm Ei}\left (3 \, \log \relax (x)\right ) e^{2} - \frac {3}{32} \, {\rm Ei}\left (2 \, \log \relax (x)\right ) e^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.63, size = 19, normalized size = 0.76 \begin {gather*} -\frac {3\,x\,\left (4\,x-1\right )\,{\left (\ln \left (\ln \relax (x)\right )-x\,{\mathrm {e}}^2\right )}^2}{64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 63, normalized size = 2.52 \begin {gather*} - \frac {3 x^{4} e^{4}}{16} + \frac {3 x^{3} e^{4}}{64} + \left (- \frac {3 x^{2}}{16} + \frac {3 x}{64}\right ) \log {\left (\log {\relax (x )} \right )}^{2} + \left (\frac {3 x^{3} e^{2}}{8} - \frac {3 x^{2} e^{2}}{32}\right ) \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________