Optimal. Leaf size=24 \[ \frac {1}{x+\log \left (\frac {x}{\log \left (6+\frac {4}{4-e^x}+x\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x-4 e^x x+e^{2 x} x+\left (-112-128 x-16 x^2+e^{2 x} \left (-6-7 x-x^2\right )+e^x \left (52+60 x+8 x^2\right )\right ) \log \left (\frac {-28-4 x+e^x (6+x)}{-4+e^x}\right )}{\left (112 x^3+16 x^4+e^x \left (-52 x^3-8 x^4\right )+e^{2 x} \left (6 x^3+x^4\right )\right ) \log \left (\frac {-28-4 x+e^x (6+x)}{-4+e^x}\right )+\left (224 x^2+32 x^3+e^x \left (-104 x^2-16 x^3\right )+e^{2 x} \left (12 x^2+2 x^3\right )\right ) \log \left (\frac {-28-4 x+e^x (6+x)}{-4+e^x}\right ) \log \left (\frac {x}{\log \left (\frac {-28-4 x+e^x (6+x)}{-4+e^x}\right )}\right )+\left (112 x+16 x^2+e^x \left (-52 x-8 x^2\right )+e^{2 x} \left (6 x+x^2\right )\right ) \log \left (\frac {-28-4 x+e^x (6+x)}{-4+e^x}\right ) \log ^2\left (\frac {x}{\log \left (\frac {-28-4 x+e^x (6+x)}{-4+e^x}\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {1+x}{x}+\frac {16-4 e^x+e^{2 x}}{\left (-4+e^x\right ) \left (e^x (6+x)-4 (7+x)\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}}{\left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\\ &=\int \left (-\frac {4}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {4 \left (43+13 x+x^2\right )}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {x-6 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-7 x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-x^2 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{x (6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {1}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\right )+4 \int \frac {43+13 x+x^2}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+\int \frac {x-6 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-7 x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-x^2 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{x (6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\\ &=-\left (4 \int \frac {1}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\right )+4 \int \left (\frac {7}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {x}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {1}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}\right ) \, dx+\int \frac {x-\left (6+7 x+x^2\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{x (6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\\ &=-\left (4 \int \frac {1}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\right )+4 \int \frac {x}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {1}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+28 \int \frac {1}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+\int \left (\frac {x-6 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-7 x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-x^2 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{6 x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {-x+6 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )+7 x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )+x^2 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{6 (6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}\right ) \, dx\\ &=\frac {1}{6} \int \frac {x-6 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-7 x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )-x^2 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+\frac {1}{6} \int \frac {-x+6 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )+7 x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )+x^2 \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{(6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx-4 \int \frac {1}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {x}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {1}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+28 \int \frac {1}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\\ &=\frac {1}{6} \int \frac {x-\left (6+7 x+x^2\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{x \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+\frac {1}{6} \int \frac {-x+\left (6+7 x+x^2\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}{(6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx-4 \int \frac {1}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {x}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {1}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+28 \int \frac {1}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\\ &=\frac {1}{6} \int \left (-\frac {7}{\left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}-\frac {6}{x \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}-\frac {x}{\left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {1}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}\right ) \, dx+\frac {1}{6} \int \left (\frac {6}{(6+x) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {7 x}{(6+x) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}+\frac {x^2}{(6+x) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}-\frac {x}{(6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2}\right ) \, dx-4 \int \frac {1}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {x}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {1}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+28 \int \frac {1}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\\ &=-\left (\frac {1}{6} \int \frac {x}{\left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\right )+\frac {1}{6} \int \frac {x^2}{(6+x) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+\frac {1}{6} \int \frac {1}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx-\frac {1}{6} \int \frac {x}{(6+x) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx-\frac {7}{6} \int \frac {1}{\left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+\frac {7}{6} \int \frac {x}{(6+x) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx-4 \int \frac {1}{\left (-4+e^x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {x}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+4 \int \frac {1}{(6+x) \left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+28 \int \frac {1}{\left (-28+6 e^x-4 x+e^x x\right ) \log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right ) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx-\int \frac {1}{x \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx+\int \frac {1}{(6+x) \left (x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 31, normalized size = 1.29 \begin {gather*} \frac {1}{x+\log \left (\frac {x}{\log \left (\frac {e^x (6+x)-4 (7+x)}{-4+e^x}\right )}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 28, normalized size = 1.17 \begin {gather*} \frac {1}{x + \log \left (\frac {x}{\log \left (\frac {{\left (x + 6\right )} e^{x} - 4 \, x - 28}{e^{x} - 4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.66, size = 2495, normalized size = 103.96
method | result | size |
risch | \(\text {Expression too large to display}\) | \(2495\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 16.77, size = 29, normalized size = 1.21 \begin {gather*} \frac {1}{x + \log \relax (x) - \log \left (\log \left ({\left (x + 6\right )} e^{x} - 4 \, x - 28\right ) - \log \left (e^{x} - 4\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.71, size = 30, normalized size = 1.25 \begin {gather*} \frac {1}{x+\ln \left (\frac {x}{\ln \left (-\frac {4\,x-{\mathrm {e}}^x\,\left (x+6\right )+28}{{\mathrm {e}}^x-4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.02, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{x + \log {\left (\frac {x}{\log {\left (\frac {- 4 x + \left (x + 6\right ) e^{x} - 28}{e^{x} - 4} \right )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________