Optimal. Leaf size=25 \[ e^{4 \left (\frac {x}{2}+\frac {x \log (4)}{(1+x)^2 (x+\log (x))}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 53.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 x^2+4 x^3+2 x^4+4 x \log (4)+\left (2 x+4 x^2+2 x^3\right ) \log (x)}{x+2 x^2+x^3+\left (1+2 x+x^2\right ) \log (x)}\right ) \left (2 x^2+6 x^3+6 x^4+2 x^5+\left (-4-4 x-8 x^2\right ) \log (4)+\left (4 x+12 x^2+12 x^3+4 x^4+(4-4 x) \log (4)\right ) \log (x)+\left (2+6 x+6 x^2+2 x^3\right ) \log ^2(x)\right )}{x^2+3 x^3+3 x^4+x^5+\left (2 x+6 x^2+6 x^3+2 x^4\right ) \log (x)+\left (1+3 x+3 x^2+x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2^{1+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}} \left (3 x^3+3 x^4+x^5+x^2 (1-4 \log (4))-2 \log (4)-2 x \log (4)+2 \left (x+3 x^2+3 x^3+x^4+\log (4)-x \log (4)\right ) \log (x)+(1+x)^3 \log ^2(x)\right )}{(1+x)^3 (x+\log (x))^2} \, dx\\ &=\int \left (2^{1+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}-\frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}} \log (4)}{(1+x) (x+\log (x))^2}-\frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} (-1+x) x^{\frac {2 x}{x+\log (x)}} \log (4)}{(1+x)^3 (x+\log (x))}\right ) \, dx\\ &=-\left (\log (4) \int \frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}}{(1+x) (x+\log (x))^2} \, dx\right )-\log (4) \int \frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} (-1+x) x^{\frac {2 x}{x+\log (x)}}}{(1+x)^3 (x+\log (x))} \, dx+\int 2^{1+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}} \, dx\\ &=-\left (\log (4) \int \frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}}{(1+x) (x+\log (x))^2} \, dx\right )-\log (4) \int \left (-\frac {2^{3+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}}{(1+x)^3 (x+\log (x))}+\frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}}{(1+x)^2 (x+\log (x))}\right ) \, dx+\int 2^{1+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}} \, dx\\ &=-\left (\log (4) \int \frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}}{(1+x) (x+\log (x))^2} \, dx\right )+\log (4) \int \frac {2^{3+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}}{(1+x)^3 (x+\log (x))} \, dx-\log (4) \int \frac {2^{2+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}}}{(1+x)^2 (x+\log (x))} \, dx+\int 2^{1+\frac {8 x}{(1+x)^2 (x+\log (x))}} e^{\frac {2 x^2}{x+\log (x)}} x^{\frac {2 x}{x+\log (x)}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.45, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {2 x^2+4 x^3+2 x^4+4 x \log (4)+\left (2 x+4 x^2+2 x^3\right ) \log (x)}{x+2 x^2+x^3+\left (1+2 x+x^2\right ) \log (x)}} \left (2 x^2+6 x^3+6 x^4+2 x^5+\left (-4-4 x-8 x^2\right ) \log (4)+\left (4 x+12 x^2+12 x^3+4 x^4+(4-4 x) \log (4)\right ) \log (x)+\left (2+6 x+6 x^2+2 x^3\right ) \log ^2(x)\right )}{x^2+3 x^3+3 x^4+x^5+\left (2 x+6 x^2+6 x^3+2 x^4\right ) \log (x)+\left (1+3 x+3 x^2+x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 56, normalized size = 2.24 \begin {gather*} e^{\left (\frac {2 \, {\left (x^{4} + 2 \, x^{3} + x^{2} + 4 \, x \log \relax (2) + {\left (x^{3} + 2 \, x^{2} + x\right )} \log \relax (x)\right )}}{x^{3} + 2 \, x^{2} + {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x) + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.83, size = 216, normalized size = 8.64 \begin {gather*} e^{\left (\frac {2 \, x^{4}}{x^{3} + x^{2} \log \relax (x) + 2 \, x^{2} + 2 \, x \log \relax (x) + x + \log \relax (x)} + \frac {2 \, x^{3} \log \relax (x)}{x^{3} + x^{2} \log \relax (x) + 2 \, x^{2} + 2 \, x \log \relax (x) + x + \log \relax (x)} + \frac {4 \, x^{3}}{x^{3} + x^{2} \log \relax (x) + 2 \, x^{2} + 2 \, x \log \relax (x) + x + \log \relax (x)} + \frac {4 \, x^{2} \log \relax (x)}{x^{3} + x^{2} \log \relax (x) + 2 \, x^{2} + 2 \, x \log \relax (x) + x + \log \relax (x)} + \frac {2 \, x^{2}}{x^{3} + x^{2} \log \relax (x) + 2 \, x^{2} + 2 \, x \log \relax (x) + x + \log \relax (x)} + \frac {8 \, x \log \relax (2)}{x^{3} + x^{2} \log \relax (x) + 2 \, x^{2} + 2 \, x \log \relax (x) + x + \log \relax (x)} + \frac {2 \, x \log \relax (x)}{x^{3} + x^{2} \log \relax (x) + 2 \, x^{2} + 2 \, x \log \relax (x) + x + \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 43, normalized size = 1.72
method | result | size |
risch | \({\mathrm e}^{\frac {2 x \left (x^{2} \ln \relax (x )+x^{3}+2 x \ln \relax (x )+2 x^{2}+4 \ln \relax (2)+\ln \relax (x )+x \right )}{\left (x +1\right )^{2} \left (x +\ln \relax (x )\right )}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.06, size = 88, normalized size = 3.52 \begin {gather*} e^{\left (2 \, x + \frac {8 \, \log \relax (2) \log \relax (x)}{{\left (x + 1\right )} \log \relax (x)^{2} - 2 \, {\left (x + 1\right )} \log \relax (x) + x + 1} - \frac {8 \, \log \relax (2) \log \relax (x)}{{\left (x - 2\right )} \log \relax (x)^{2} + \log \relax (x)^{3} - {\left (2 \, x - 1\right )} \log \relax (x) + x} + \frac {8 \, \log \relax (2)}{x^{2} - {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x) + 2 \, x + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.83, size = 134, normalized size = 5.36 \begin {gather*} {256}^{\frac {x}{x+\ln \relax (x)+x^2\,\ln \relax (x)+2\,x\,\ln \relax (x)+2\,x^2+x^3}}\,x^{\frac {2\,x}{x+\ln \relax (x)}}\,{\mathrm {e}}^{\frac {2\,x^2}{x+\ln \relax (x)+x^2\,\ln \relax (x)+2\,x\,\ln \relax (x)+2\,x^2+x^3}}\,{\mathrm {e}}^{\frac {2\,x^4}{x+\ln \relax (x)+x^2\,\ln \relax (x)+2\,x\,\ln \relax (x)+2\,x^2+x^3}}\,{\mathrm {e}}^{\frac {4\,x^3}{x+\ln \relax (x)+x^2\,\ln \relax (x)+2\,x\,\ln \relax (x)+2\,x^2+x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.01, size = 61, normalized size = 2.44 \begin {gather*} e^{\frac {2 x^{4} + 4 x^{3} + 2 x^{2} + 8 x \log {\relax (2 )} + \left (2 x^{3} + 4 x^{2} + 2 x\right ) \log {\relax (x )}}{x^{3} + 2 x^{2} + x + \left (x^{2} + 2 x + 1\right ) \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________