Optimal. Leaf size=21 \[ e^{x-\log ^2(25 x)} x^2 (-1+10 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 22, normalized size of antiderivative = 1.05, number of steps used = 1, number of rules used = 1, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {2288} \begin {gather*} x \left (x-10 x^2\right ) \left (-e^{x-\log ^2(25 x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-e^{x-\log ^2(25 x)} x \left (x-10 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 21, normalized size = 1.00 \begin {gather*} e^{x-\log ^2(25 x)} x^2 (-1+10 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 23, normalized size = 1.10 \begin {gather*} {\left (10 \, x^{3} - x^{2}\right )} e^{\left (-\log \left (25 \, x\right )^{2} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 33, normalized size = 1.57 \begin {gather*} 10 \, x^{3} e^{\left (-\log \left (25 \, x\right )^{2} + x\right )} - x^{2} e^{\left (-\log \left (25 \, x\right )^{2} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 1.00
method | result | size |
risch | \(\left (10 x -1\right ) x^{2} {\mathrm e}^{-\ln \left (25 x \right )^{2}+x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 33, normalized size = 1.57 \begin {gather*} {\left (10 \, x^{3} - x^{2}\right )} e^{\left (-4 \, \log \relax (5)^{2} - 4 \, \log \relax (5) \log \relax (x) - \log \relax (x)^{2} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.94, size = 38, normalized size = 1.81 \begin {gather*} -\frac {{\mathrm {e}}^{-{\ln \relax (x)}^2-4\,{\ln \relax (5)}^2}\,\left (x^2\,{\mathrm {e}}^x-10\,x^3\,{\mathrm {e}}^x\right )}{x^{4\,\ln \relax (5)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 13.94, size = 27, normalized size = 1.29 \begin {gather*} \left (10 x^{3} e^{- \log {\left (25 x \right )}^{2}} - x^{2} e^{- \log {\left (25 x \right )}^{2}}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________