Optimal. Leaf size=30 \[ -x+\frac {e^5}{(5-x) \left (7+\frac {10 e^x x}{3+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-11025-2940 x+1274 x^2+196 x^3-49 x^4+e^5 \left (63+42 x+7 x^2\right )+e^{2 x} \left (-2500 x^2+1000 x^3-100 x^4\right )+e^x \left (-10500 x+700 x^2+980 x^3-140 x^4+e^5 \left (-150-90 x-10 x^2+10 x^3\right )\right )}{11025+2940 x-1274 x^2-196 x^3+49 x^4+e^{2 x} \left (2500 x^2-1000 x^3+100 x^4\right )+e^x \left (10500 x-700 x^2-980 x^3+140 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-100 e^{2 x} (-5+x)^2 x^2-140 e^x (-5+x)^2 x (3+x)+7 e^5 (3+x)^2-49 \left (-15-2 x+x^2\right )^2+10 e^{5+x} \left (-15-9 x-x^2+x^3\right )}{(5-x)^2 \left (21+\left (7+10 e^x\right ) x\right )^2} \, dx\\ &=\int \left (-1+\frac {e^5 \left (-15-9 x-x^2+x^3\right )}{(-5+x)^2 x \left (21+7 x+10 e^x x\right )}-\frac {7 e^5 \left (9+12 x+6 x^2+x^3\right )}{(-5+x) x \left (21+7 x+10 e^x x\right )^2}\right ) \, dx\\ &=-x+e^5 \int \frac {-15-9 x-x^2+x^3}{(-5+x)^2 x \left (21+7 x+10 e^x x\right )} \, dx-\left (7 e^5\right ) \int \frac {9+12 x+6 x^2+x^3}{(-5+x) x \left (21+7 x+10 e^x x\right )^2} \, dx\\ &=-x+e^5 \int \left (\frac {1}{21+7 x+10 e^x x}+\frac {8}{(-5+x)^2 \left (21+7 x+10 e^x x\right )}+\frac {48}{5 (-5+x) \left (21+7 x+10 e^x x\right )}-\frac {3}{5 x \left (21+7 x+10 e^x x\right )}\right ) \, dx-\left (7 e^5\right ) \int \left (\frac {11}{\left (21+7 x+10 e^x x\right )^2}+\frac {344}{5 (-5+x) \left (21+7 x+10 e^x x\right )^2}-\frac {9}{5 x \left (21+7 x+10 e^x x\right )^2}+\frac {x}{\left (21+7 x+10 e^x x\right )^2}\right ) \, dx\\ &=-x-\frac {1}{5} \left (3 e^5\right ) \int \frac {1}{x \left (21+7 x+10 e^x x\right )} \, dx+e^5 \int \frac {1}{21+7 x+10 e^x x} \, dx-\left (7 e^5\right ) \int \frac {x}{\left (21+7 x+10 e^x x\right )^2} \, dx+\left (8 e^5\right ) \int \frac {1}{(-5+x)^2 \left (21+7 x+10 e^x x\right )} \, dx+\frac {1}{5} \left (48 e^5\right ) \int \frac {1}{(-5+x) \left (21+7 x+10 e^x x\right )} \, dx+\frac {1}{5} \left (63 e^5\right ) \int \frac {1}{x \left (21+7 x+10 e^x x\right )^2} \, dx-\left (77 e^5\right ) \int \frac {1}{\left (21+7 x+10 e^x x\right )^2} \, dx-\frac {1}{5} \left (2408 e^5\right ) \int \frac {1}{(-5+x) \left (21+7 x+10 e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 30, normalized size = 1.00 \begin {gather*} -x-\frac {e^5 (3+x)}{(-5+x) \left (21+7 x+10 e^x x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.94, size = 58, normalized size = 1.93 \begin {gather*} -\frac {7 \, x^{3} - 14 \, x^{2} + {\left (x + 3\right )} e^{5} + 10 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{x} - 105 \, x}{7 \, x^{2} + 10 \, {\left (x^{2} - 5 \, x\right )} e^{x} - 14 \, x - 105} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 62, normalized size = 2.07 \begin {gather*} -\frac {10 \, x^{3} e^{x} + 7 \, x^{3} - 50 \, x^{2} e^{x} - 14 \, x^{2} + x e^{5} - 105 \, x + 3 \, e^{5}}{10 \, x^{2} e^{x} + 7 \, x^{2} - 50 \, x e^{x} - 14 \, x - 105} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 29, normalized size = 0.97
method | result | size |
risch | \(-x -\frac {{\mathrm e}^{5} \left (3+x \right )}{\left (x -5\right ) \left (10 \,{\mathrm e}^{x} x +7 x +21\right )}\) | \(29\) |
norman | \(\frac {-21 x^{2}+\left (175-{\mathrm e}^{5}\right ) x +250 \,{\mathrm e}^{x} x -7 x^{3}-10 \,{\mathrm e}^{x} x^{3}+525-3 \,{\mathrm e}^{5}}{10 \,{\mathrm e}^{x} x^{2}-50 \,{\mathrm e}^{x} x +7 x^{2}-14 x -105}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 59, normalized size = 1.97 \begin {gather*} -\frac {7 \, x^{3} - 14 \, x^{2} + x {\left (e^{5} - 105\right )} + 10 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{x} + 3 \, e^{5}}{7 \, x^{2} + 10 \, {\left (x^{2} - 5 \, x\right )} e^{x} - 14 \, x - 105} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {2940\,x-{\mathrm {e}}^5\,\left (7\,x^2+42\,x+63\right )+{\mathrm {e}}^x\,\left (10500\,x+{\mathrm {e}}^5\,\left (-10\,x^3+10\,x^2+90\,x+150\right )-700\,x^2-980\,x^3+140\,x^4\right )+{\mathrm {e}}^{2\,x}\,\left (100\,x^4-1000\,x^3+2500\,x^2\right )-1274\,x^2-196\,x^3+49\,x^4+11025}{2940\,x+{\mathrm {e}}^x\,\left (140\,x^4-980\,x^3-700\,x^2+10500\,x\right )+{\mathrm {e}}^{2\,x}\,\left (100\,x^4-1000\,x^3+2500\,x^2\right )-1274\,x^2-196\,x^3+49\,x^4+11025} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 34, normalized size = 1.13 \begin {gather*} - x + \frac {- x e^{5} - 3 e^{5}}{7 x^{2} - 14 x + \left (10 x^{2} - 50 x\right ) e^{x} - 105} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________