Optimal. Leaf size=32 \[ \log \left (\frac {1}{5-\frac {3+x-\log \left (\log \left (x^2\right )\right )}{-\log (x)+x \log ^2\left (x^2\right )}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.97, antiderivative size = 40, normalized size of antiderivative = 1.25, number of steps used = 5, number of rules used = 3, integrand size = 162, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {6688, 6742, 6684} \begin {gather*} \log \left (\log (x)-x \log ^2\left (x^2\right )\right )-\log \left (-5 x \log ^2\left (x^2\right )-\log \left (\log \left (x^2\right )\right )+x+5 \log (x)+3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (x) \left (2-x \log \left (x^2\right )\right )+\log \left (x^2\right ) \left (3+x-2 x \log \left (x^2\right ) \left (7+2 x-2 \log \left (\log \left (x^2\right )\right )\right )+x \log ^2\left (x^2\right ) \left (-3+\log \left (\log \left (x^2\right )\right )\right )-\log \left (\log \left (x^2\right )\right )\right )}{x \log \left (x^2\right ) \left (\log (x)-x \log ^2\left (x^2\right )\right ) \left (3+x+5 \log (x)-5 x \log ^2\left (x^2\right )-\log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=\int \left (\frac {-1+4 x \log \left (x^2\right )+x \log ^2\left (x^2\right )}{x \left (-\log (x)+x \log ^2\left (x^2\right )\right )}+\frac {-2+5 \log \left (x^2\right )+x \log \left (x^2\right )-20 x \log ^2\left (x^2\right )-5 x \log ^3\left (x^2\right )}{x \log \left (x^2\right ) \left (-3-x-5 \log (x)+5 x \log ^2\left (x^2\right )+\log \left (\log \left (x^2\right )\right )\right )}\right ) \, dx\\ &=\int \frac {-1+4 x \log \left (x^2\right )+x \log ^2\left (x^2\right )}{x \left (-\log (x)+x \log ^2\left (x^2\right )\right )} \, dx+\int \frac {-2+5 \log \left (x^2\right )+x \log \left (x^2\right )-20 x \log ^2\left (x^2\right )-5 x \log ^3\left (x^2\right )}{x \log \left (x^2\right ) \left (-3-x-5 \log (x)+5 x \log ^2\left (x^2\right )+\log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=\log \left (\log (x)-x \log ^2\left (x^2\right )\right )-\log \left (3+x+5 \log (x)-5 x \log ^2\left (x^2\right )-\log \left (\log \left (x^2\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.62, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \log (x)+(3+x-x \log (x)) \log \left (x^2\right )+\left (-14 x-4 x^2\right ) \log ^2\left (x^2\right )-3 x \log ^3\left (x^2\right )+\left (-\log \left (x^2\right )+4 x \log ^2\left (x^2\right )+x \log ^3\left (x^2\right )\right ) \log \left (\log \left (x^2\right )\right )}{\left (\left (3 x+x^2\right ) \log (x)+5 x \log ^2(x)\right ) \log \left (x^2\right )+\left (-3 x^2-x^3-10 x^2 \log (x)\right ) \log ^3\left (x^2\right )+5 x^3 \log ^5\left (x^2\right )+\left (-x \log (x) \log \left (x^2\right )+x^2 \log ^3\left (x^2\right )\right ) \log \left (\log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.29, size = 42, normalized size = 1.31 \begin {gather*} -\log \left (20 \, x \log \relax (x)^{2} - x - 5 \, \log \relax (x) + \log \left (2 \, \log \relax (x)\right ) - 3\right ) + \log \relax (x) + \log \left (\frac {4 \, x \log \relax (x) - 1}{x}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3 \, x \log \left (x^{2}\right )^{3} + 2 \, {\left (2 \, x^{2} + 7 \, x\right )} \log \left (x^{2}\right )^{2} + {\left (x \log \relax (x) - x - 3\right )} \log \left (x^{2}\right ) - {\left (x \log \left (x^{2}\right )^{3} + 4 \, x \log \left (x^{2}\right )^{2} - \log \left (x^{2}\right )\right )} \log \left (\log \left (x^{2}\right )\right ) - 2 \, \log \relax (x)}{5 \, x^{3} \log \left (x^{2}\right )^{5} - {\left (x^{3} + 10 \, x^{2} \log \relax (x) + 3 \, x^{2}\right )} \log \left (x^{2}\right )^{3} + {\left (5 \, x \log \relax (x)^{2} + {\left (x^{2} + 3 \, x\right )} \log \relax (x)\right )} \log \left (x^{2}\right ) + {\left (x^{2} \log \left (x^{2}\right )^{3} - x \log \left (x^{2}\right ) \log \relax (x)\right )} \log \left (\log \left (x^{2}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.54, size = 740, normalized size = 23.12
method | result | size |
risch | \(\ln \relax (x )+\ln \left (\ln \relax (x )^{2}-\frac {\left (2 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-4 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+2 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}+1\right ) \ln \relax (x )}{4 x}-\frac {\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \left (\mathrm {csgn}\left (i x \right )^{4}-4 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{3}+6 \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{2}-4 \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{4}\right )}{16}\right )-\ln \left (\ln \left (2 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}\right )-\frac {75 x \,\pi ^{3} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{5}+4 \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+20 \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-30 x \,\pi ^{3} \mathrm {csgn}\left (i x \right )^{5} \mathrm {csgn}\left (i x^{2}\right )^{4}+5 x \,\pi ^{3} \mathrm {csgn}\left (i x \right )^{6} \mathrm {csgn}\left (i x^{2}\right )^{3}-100 x \,\pi ^{3} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{6}+75 x \,\pi ^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{7}-30 x \,\pi ^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{8}-240 x \ln \relax (x )^{2} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-40 \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+48 i \ln \relax (x )+12 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+80 i \ln \relax (x )^{2}-320 i x \ln \relax (x )^{3}+16 i x \ln \relax (x )+5 x \,\pi ^{3} \mathrm {csgn}\left (i x^{2}\right )^{9}+20 \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}+12 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-24 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+60 i \pi ^{2} x \mathrm {csgn}\left (i x^{2}\right )^{6} \ln \relax (x )-240 x \ln \relax (x )^{2} \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+480 x \ln \relax (x )^{2} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-240 i \pi ^{2} x \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \relax (x )+60 i \pi ^{2} x \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \relax (x )-240 i \pi ^{2} x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5} \ln \relax (x )+360 i \pi ^{2} x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \ln \relax (x )}{4 \left (4 i \ln \relax (x )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right )}\right )\) | \(740\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 43, normalized size = 1.34 \begin {gather*} -\log \left (20 \, x \log \relax (x)^{2} - x + \log \relax (2) - 5 \, \log \relax (x) + \log \left (\log \relax (x)\right ) - 3\right ) + \log \relax (x) + \log \left (\frac {4 \, x \log \relax (x) - 1}{4 \, x}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.83, size = 46, normalized size = 1.44 \begin {gather*} \ln \left (\frac {\ln \relax (x)-x\,{\ln \left (x^2\right )}^2}{x}\right )-\ln \left (\ln \left (\ln \left (x^2\right )\right )-x-5\,\ln \relax (x)+5\,x\,{\ln \left (x^2\right )}^2-3\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 41, normalized size = 1.28 \begin {gather*} \log {\relax (x )} + \log {\left (\log {\relax (x )}^{2} - \frac {\log {\relax (x )}}{4 x} \right )} - \log {\left (20 x \log {\relax (x )}^{2} - x - 5 \log {\relax (x )} + \log {\left (2 \log {\relax (x )} \right )} - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________