Optimal. Leaf size=26 \[ 3 e^{-x} \left (4+x+\frac {1}{4} e^5 (\log (3)+\log (4))-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 42, normalized size of antiderivative = 1.62, number of steps used = 15, number of rules used = 9, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.209, Rules used = {6, 12, 6741, 6742, 2199, 2178, 2176, 2194, 2554} \begin {gather*} 3 e^{-x} x+3 e^{-x}-3 e^{-x} \log (x)+\frac {3}{4} e^{-x} \left (12+e^5 \log (12)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-12-12 x^2+x \left (-36-3 e^5 \log (3)\right )-3 e^5 x \log (4)+12 x \log (x)\right )}{4 x} \, dx\\ &=\int \frac {e^{-x} \left (-12-12 x^2+x \left (-36-3 e^5 \log (3)-3 e^5 \log (4)\right )+12 x \log (x)\right )}{4 x} \, dx\\ &=\frac {1}{4} \int \frac {e^{-x} \left (-12-12 x^2+x \left (-36-3 e^5 \log (3)-3 e^5 \log (4)\right )+12 x \log (x)\right )}{x} \, dx\\ &=\frac {1}{4} \int \frac {3 e^{-x} \left (-4-4 x^2-12 x \left (1+\frac {1}{12} e^5 \log (12)\right )+4 x \log (x)\right )}{x} \, dx\\ &=\frac {3}{4} \int \frac {e^{-x} \left (-4-4 x^2-12 x \left (1+\frac {1}{12} e^5 \log (12)\right )+4 x \log (x)\right )}{x} \, dx\\ &=\frac {3}{4} \int \left (\frac {e^{-x} \left (-4-4 x^2-x \left (12+e^5 \log (12)\right )\right )}{x}+4 e^{-x} \log (x)\right ) \, dx\\ &=\frac {3}{4} \int \frac {e^{-x} \left (-4-4 x^2-x \left (12+e^5 \log (12)\right )\right )}{x} \, dx+3 \int e^{-x} \log (x) \, dx\\ &=-3 e^{-x} \log (x)+\frac {3}{4} \int \left (-\frac {4 e^{-x}}{x}-4 e^{-x} x+e^{-x} \left (-12-e^5 \log (12)\right )\right ) \, dx+3 \int \frac {e^{-x}}{x} \, dx\\ &=3 \text {Ei}(-x)-3 e^{-x} \log (x)-3 \int \frac {e^{-x}}{x} \, dx-3 \int e^{-x} x \, dx-\frac {1}{4} \left (3 \left (12+e^5 \log (12)\right )\right ) \int e^{-x} \, dx\\ &=3 e^{-x} x+\frac {3}{4} e^{-x} \left (12+e^5 \log (12)\right )-3 e^{-x} \log (x)-3 \int e^{-x} \, dx\\ &=3 e^{-x}+3 e^{-x} x+\frac {3}{4} e^{-x} \left (12+e^5 \log (12)\right )-3 e^{-x} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 24, normalized size = 0.92 \begin {gather*} \frac {3}{4} e^{-x} \left (16+4 x+e^5 \log (12)-4 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 31, normalized size = 1.19 \begin {gather*} \frac {3}{4} \, {\left (e^{5} \log \relax (3) + 2 \, e^{5} \log \relax (2) + 4 \, x + 16\right )} e^{\left (-x\right )} - 3 \, e^{\left (-x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 42, normalized size = 1.62 \begin {gather*} 3 \, x e^{\left (-x\right )} + \frac {3}{4} \, e^{\left (-x + 5\right )} \log \relax (3) + \frac {3}{2} \, e^{\left (-x + 5\right )} \log \relax (2) - 3 \, e^{\left (-x\right )} \log \relax (x) + 12 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.04
method | result | size |
norman | \(\left (3 x +12-3 \ln \relax (x )+\frac {3 \,{\mathrm e}^{5} \ln \relax (2)}{2}+\frac {3 \,{\mathrm e}^{5} \ln \relax (3)}{4}\right ) {\mathrm e}^{-x}\) | \(27\) |
risch | \(-3 \ln \relax (x ) {\mathrm e}^{-x}+\frac {3 \left (2 \,{\mathrm e}^{5} \ln \relax (2)+{\mathrm e}^{5} \ln \relax (3)+4 x +16\right ) {\mathrm e}^{-x}}{4}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 44, normalized size = 1.69 \begin {gather*} 3 \, {\left (x + 1\right )} e^{\left (-x\right )} + \frac {3}{4} \, e^{\left (-x + 5\right )} \log \relax (3) + \frac {3}{2} \, e^{\left (-x + 5\right )} \log \relax (2) - 3 \, e^{\left (-x\right )} \log \relax (x) + 9 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 26, normalized size = 1.00 \begin {gather*} \frac {3\,{\mathrm {e}}^{-x}\,\left (4\,x-4\,\ln \relax (x)+2\,{\mathrm {e}}^5\,\ln \relax (2)+{\mathrm {e}}^5\,\ln \relax (3)+16\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 31, normalized size = 1.19 \begin {gather*} \frac {\left (12 x - 12 \log {\relax (x )} + 48 + 3 e^{5} \log {\relax (3 )} + 6 e^{5} \log {\relax (2 )}\right ) e^{- x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________