Optimal. Leaf size=21 \[ \frac {5 \left (2-\frac {9 x}{5}\right ) \left (2+x-x^2\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20+8 x+19 x^2-9 x^3+\left (-8 x-38 x^2+27 x^3\right ) \log (x)}{x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-20+8 x+19 x^2-9 x^3}{x \log ^2(x)}+\frac {-8-38 x+27 x^2}{\log (x)}\right ) \, dx\\ &=\int \frac {-20+8 x+19 x^2-9 x^3}{x \log ^2(x)} \, dx+\int \frac {-8-38 x+27 x^2}{\log (x)} \, dx\\ &=\int \left (-\frac {8}{\log (x)}-\frac {38 x}{\log (x)}+\frac {27 x^2}{\log (x)}\right ) \, dx+\int \frac {-20+8 x+19 x^2-9 x^3}{x \log ^2(x)} \, dx\\ &=-\left (8 \int \frac {1}{\log (x)} \, dx\right )+27 \int \frac {x^2}{\log (x)} \, dx-38 \int \frac {x}{\log (x)} \, dx+\int \frac {-20+8 x+19 x^2-9 x^3}{x \log ^2(x)} \, dx\\ &=-8 \text {li}(x)+27 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )-38 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+\int \frac {-20+8 x+19 x^2-9 x^3}{x \log ^2(x)} \, dx\\ &=-38 \text {Ei}(2 \log (x))+27 \text {Ei}(3 \log (x))-8 \text {li}(x)+\int \frac {-20+8 x+19 x^2-9 x^3}{x \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 20, normalized size = 0.95 \begin {gather*} \frac {20-8 x-19 x^2+9 x^3}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 20, normalized size = 0.95 \begin {gather*} \frac {9 \, x^{3} - 19 \, x^{2} - 8 \, x + 20}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 20, normalized size = 0.95 \begin {gather*} \frac {9 \, x^{3} - 19 \, x^{2} - 8 \, x + 20}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 21, normalized size = 1.00
method | result | size |
norman | \(\frac {9 x^{3}-19 x^{2}-8 x +20}{\ln \relax (x )}\) | \(21\) |
risch | \(\frac {9 x^{3}-19 x^{2}-8 x +20}{\ln \relax (x )}\) | \(21\) |
default | \(\frac {9 x^{3}}{\ln \relax (x )}-\frac {19 x^{2}}{\ln \relax (x )}-\frac {8 x}{\ln \relax (x )}+\frac {20}{\ln \relax (x )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 50, normalized size = 2.38 \begin {gather*} \frac {20}{\log \relax (x)} + 27 \, {\rm Ei}\left (3 \, \log \relax (x)\right ) - 38 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) - 8 \, {\rm Ei}\left (\log \relax (x)\right ) + 8 \, \Gamma \left (-1, -\log \relax (x)\right ) + 38 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) - 27 \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 16, normalized size = 0.76 \begin {gather*} \frac {\left (9\,x-10\right )\,\left (x+1\right )\,\left (x-2\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.81 \begin {gather*} \frac {9 x^{3} - 19 x^{2} - 8 x + 20}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________