Optimal. Leaf size=22 \[ 1+\frac {x \left (e^5-\log (10 \log (4))\right )}{5 \log (6)} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {8} \begin {gather*} \frac {x \left (e^5-\log (10 \log (4))\right )}{5 \log (6)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {x \left (e^5-\log (10 \log (4))\right )}{5 \log (6)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 27, normalized size = 1.23 \begin {gather*} \frac {e^5 x}{5 \log (6)}-\frac {x \log (10 \log (4))}{5 \log (6)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 19, normalized size = 0.86 \begin {gather*} \frac {x e^{5} - x \log \left (20 \, \log \relax (2)\right )}{5 \, \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 17, normalized size = 0.77 \begin {gather*} \frac {x {\left (e^{5} - \log \left (20 \, \log \relax (2)\right )\right )}}{5 \, \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.82
method | result | size |
default | \(\frac {x \left (-\ln \left (20 \ln \relax (2)\right )+{\mathrm e}^{5}\right )}{5 \ln \relax (6)}\) | \(18\) |
norman | \(\frac {\left (-\ln \left (20\right )-\ln \left (\ln \relax (2)\right )+{\mathrm e}^{5}\right ) x}{5 \ln \relax (6)}\) | \(20\) |
risch | \(-\frac {2 x \ln \relax (2)}{5 \left (\ln \relax (2)+\ln \relax (3)\right )}-\frac {x \ln \relax (5)}{5 \left (\ln \relax (2)+\ln \relax (3)\right )}-\frac {x \ln \left (\ln \relax (2)\right )}{5 \left (\ln \relax (2)+\ln \relax (3)\right )}+\frac {x \,{\mathrm e}^{5}}{5 \ln \relax (2)+5 \ln \relax (3)}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 17, normalized size = 0.77 \begin {gather*} \frac {x {\left (e^{5} - \log \left (20 \, \log \relax (2)\right )\right )}}{5 \, \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 19, normalized size = 0.86 \begin {gather*} -\frac {x\,\left (\frac {\ln \left (20\,\ln \relax (2)\right )}{5}-\frac {{\mathrm {e}}^5}{5}\right )}{\ln \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 17, normalized size = 0.77 \begin {gather*} \frac {x \left (- \frac {\log {\left (20 \log {\relax (2 )} \right )}}{5} + \frac {e^{5}}{5}\right )}{\log {\relax (6 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________