Optimal. Leaf size=29 \[ \frac {3-x}{20 e^x-x-4 \log (2) \left (e^x-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x+4 e^x \left (-20 x+5 x^2\right )+(-12+4 x) \log (2)+e^x \left (16 x-4 x^2\right ) \log (2)-4 x \log (2) \log (x)}{400 e^{2 x} x+x^3+8 e^x x^2 \log (2)+16 e^{2 x} x \log ^2(2)+4 e^x \left (-10 x^2-40 e^x x \log (2)\right )+\left (160 e^x x \log (2)-8 x^2 \log (2)-32 e^x x \log ^2(2)\right ) \log (x)+16 x \log ^2(2) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x+4 e^x \left (-20 x+5 x^2\right )+(-12+4 x) \log (2)+e^x \left (16 x-4 x^2\right ) \log (2)-4 x \log (2) \log (x)}{x^3+8 e^x x^2 \log (2)+4 e^x \left (-10 x^2-40 e^x x \log (2)\right )+e^{2 x} x \left (400+16 \log ^2(2)\right )+\left (160 e^x x \log (2)-8 x^2 \log (2)-32 e^x x \log ^2(2)\right ) \log (x)+16 x \log ^2(2) \log ^2(x)} \, dx\\ &=\int \frac {-4 e^x x^2 (-5+\log (2))-12 \log (2)+x \left (3+16 e^x (-5+\log (2))+\log (16)\right )-4 x \log (2) \log (x)}{x \left (x+4 e^x (-5+\log (2))-4 \log (2) \log (x)\right )^2} \, dx\\ &=\int \left (\frac {4-x}{x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)}+\frac {-4 x^2+x^3-12 \log (2)+3 x \left (1+\frac {\log (16)}{3}\right )+12 x \log (2) \log (x)-4 x^2 \log (2) \log (x)}{x \left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2}\right ) \, dx\\ &=\int \frac {4-x}{x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)} \, dx+\int \frac {-4 x^2+x^3-12 \log (2)+3 x \left (1+\frac {\log (16)}{3}\right )+12 x \log (2) \log (x)-4 x^2 \log (2) \log (x)}{x \left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2} \, dx\\ &=\int \left (-\frac {4 x}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2}+\frac {x^2}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2}-\frac {12 \log (2)}{x \left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2}+\frac {3+\log (16)}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2}+\frac {12 \log (2) \log (x)}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2}-\frac {4 x \log (2) \log (x)}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2}\right ) \, dx+\int \left (\frac {4}{x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)}+\frac {x}{-x+20 e^x \left (1-\frac {\log (2)}{5}\right )+4 \log (2) \log (x)}\right ) \, dx\\ &=-\left (4 \int \frac {x}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2} \, dx\right )+4 \int \frac {1}{x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)} \, dx-(4 \log (2)) \int \frac {x \log (x)}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2} \, dx-(12 \log (2)) \int \frac {1}{x \left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2} \, dx+(12 \log (2)) \int \frac {\log (x)}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2} \, dx+(3+\log (16)) \int \frac {1}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2} \, dx+\int \frac {x^2}{\left (x-20 e^x \left (1-\frac {\log (2)}{5}\right )-4 \log (2) \log (x)\right )^2} \, dx+\int \frac {x}{-x+20 e^x \left (1-\frac {\log (2)}{5}\right )+4 \log (2) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.98, size = 72, normalized size = 2.48 \begin {gather*} \frac {x^2 \left (1+4 e^x (-5+\log (2))\right )-x \left (3+12 e^x (-5+\log (2))+\log (16)\right )+\log (4096)}{\left (x+4 e^x x (-5+\log (2))-4 \log (2)\right ) \left (x+4 e^x (-5+\log (2))-4 \log (2) \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 26, normalized size = 0.90 \begin {gather*} \frac {x - 3}{{\left (\log \relax (2) - 5\right )} e^{\left (x + 2 \, \log \relax (2)\right )} - 4 \, \log \relax (2) \log \relax (x) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 24, normalized size = 0.83 \begin {gather*} \frac {x - 3}{4 \, e^{x} \log \relax (2) - 4 \, \log \relax (2) \log \relax (x) + x - 20 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.86
method | result | size |
risch | \(\frac {x -3}{4 \,{\mathrm e}^{x} \ln \relax (2)-4 \ln \relax (2) \ln \relax (x )+x -20 \,{\mathrm e}^{x}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 22, normalized size = 0.76 \begin {gather*} \frac {x - 3}{4 \, {\left (\log \relax (2) - 5\right )} e^{x} - 4 \, \log \relax (2) \log \relax (x) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {3\,x+\ln \relax (2)\,\left (4\,x-12\right )-{\mathrm {e}}^{x+2\,\ln \relax (2)}\,\left (20\,x-5\,x^2\right )+{\mathrm {e}}^x\,\ln \relax (2)\,\left (16\,x-4\,x^2\right )-4\,x\,\ln \relax (2)\,\ln \relax (x)}{25\,x\,{\mathrm {e}}^{2\,x+4\,\ln \relax (2)}-{\mathrm {e}}^{x+2\,\ln \relax (2)}\,\left (10\,x^2+40\,x\,{\mathrm {e}}^x\,\ln \relax (2)\right )-\ln \relax (x)\,\left (8\,x^2\,\ln \relax (2)-40\,x\,{\mathrm {e}}^{x+2\,\ln \relax (2)}\,\ln \relax (2)+32\,x\,{\mathrm {e}}^x\,{\ln \relax (2)}^2\right )+x^3+8\,x^2\,{\mathrm {e}}^x\,\ln \relax (2)+16\,x\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2+16\,x\,{\ln \relax (2)}^2\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 22, normalized size = 0.76 \begin {gather*} \frac {x - 3}{x + \left (-20 + 4 \log {\relax (2 )}\right ) e^{x} - 4 \log {\relax (2 )} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________