Optimal. Leaf size=30 \[ \frac {12 (-6+x)}{-3+x-\frac {\log \left (2+\frac {2}{x}-\frac {\log (4)}{x}\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-144+24 x-72 x^2-72 x^3+\left (72-12 x+36 x^2\right ) \log (4)+\left (-144-96 x+48 x^2+(72-24 x) \log (4)\right ) \log \left (\frac {2+2 x-\log (4)}{x}\right )}{-18 x^2-6 x^3+10 x^4-2 x^5+\left (9 x^2-6 x^3+x^4\right ) \log (4)+\left (-12 x-8 x^2+4 x^3+\left (6 x-2 x^2\right ) \log (4)\right ) \log \left (\frac {2+2 x-\log (4)}{x}\right )+(-2-2 x+\log (4)) \log ^2\left (\frac {2+2 x-\log (4)}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 \left (6 x^3-6 (-2+\log (4))+x (-2+\log (4))-3 x^2 (-2+\log (4))-2 (-3+x) (2+2 x-\log (4)) \log \left (\frac {2+2 x-\log (4)}{x}\right )\right )}{(2+2 x-\log (4)) \left ((-3+x) x-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx\\ &=12 \int \frac {6 x^3-6 (-2+\log (4))+x (-2+\log (4))-3 x^2 (-2+\log (4))-2 (-3+x) (2+2 x-\log (4)) \log \left (\frac {2+2 x-\log (4)}{x}\right )}{(2+2 x-\log (4)) \left ((-3+x) x-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx\\ &=12 \int \left (\frac {2 (-3+x)}{-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )}+\frac {(6-x) \left (2+4 x^3-3 x (2-\log (4))-\log (4)-2 x^2 (1+\log (4))\right )}{(2+2 x-\log (4)) \left (3 x-x^2+\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2}\right ) \, dx\\ &=12 \int \frac {(6-x) \left (2+4 x^3-3 x (2-\log (4))-\log (4)-2 x^2 (1+\log (4))\right )}{(2+2 x-\log (4)) \left (3 x-x^2+\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx+24 \int \frac {-3+x}{-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )} \, dx\\ &=12 \int \left (-\frac {18 x}{\left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2}+\frac {15 x^2}{\left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2}-\frac {2 x^3}{\left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2}+\frac {-2+\log (4)}{2 \left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2}+\frac {(2-\log (4)) (14-\log (4))}{2 (2+2 x-\log (4)) \left (3 x-x^2+\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2}\right ) \, dx+24 \int \left (-\frac {3}{-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )}+\frac {x}{-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )}\right ) \, dx\\ &=-\left (24 \int \frac {x^3}{\left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx\right )+24 \int \frac {x}{-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )} \, dx-72 \int \frac {1}{-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )} \, dx+180 \int \frac {x^2}{\left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx-216 \int \frac {x}{\left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx-(6 (2-\log (4))) \int \frac {1}{\left (-3 x+x^2-\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx+(6 (2-\log (4)) (14-\log (4))) \int \frac {1}{(2+2 x-\log (4)) \left (3 x-x^2+\log \left (\frac {2+2 x-\log (4)}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 31, normalized size = 1.03 \begin {gather*} -\frac {12 (-6+x) x}{3 x-x^2+\log \left (\frac {2+2 x-\log (4)}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 33, normalized size = 1.10 \begin {gather*} \frac {12 \, {\left (x^{2} - 6 \, x\right )}}{x^{2} - 3 \, x - \log \left (\frac {2 \, {\left (x - \log \relax (2) + 1\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.62, size = 171, normalized size = 5.70 \begin {gather*} \frac {12 \, {\left (\log \relax (2)^{3} + \frac {6 \, {\left (x - \log \relax (2) + 1\right )} \log \relax (2)^{2}}{x} - 9 \, \log \relax (2)^{2} - \frac {12 \, {\left (x - \log \relax (2) + 1\right )} \log \relax (2)}{x} + \frac {6 \, {\left (x - \log \relax (2) + 1\right )}}{x} + 15 \, \log \relax (2) - 7\right )}}{{\left (\log \relax (2)^{2} + \frac {3 \, {\left (x - \log \relax (2) + 1\right )} \log \relax (2)}{x} - \frac {{\left (x - \log \relax (2) + 1\right )}^{2} \log \left (\frac {2 \, {\left (x - \log \relax (2) + 1\right )}}{x}\right )}{x^{2}} + \frac {2 \, {\left (x - \log \relax (2) + 1\right )} \log \left (\frac {2 \, {\left (x - \log \relax (2) + 1\right )}}{x}\right )}{x} - \frac {3 \, {\left (x - \log \relax (2) + 1\right )}}{x} - 5 \, \log \relax (2) - \log \left (\frac {2 \, {\left (x - \log \relax (2) + 1\right )}}{x}\right ) + 4\right )} {\left (\log \relax (2) - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 32, normalized size = 1.07
method | result | size |
risch | \(\frac {12 x \left (x -6\right )}{x^{2}-3 x -\ln \left (\frac {-2 \ln \relax (2)+2 x +2}{x}\right )}\) | \(32\) |
norman | \(\frac {12 \ln \left (\frac {-2 \ln \relax (2)+2 x +2}{x}\right )-36 x}{x^{2}-3 x -\ln \left (\frac {-2 \ln \relax (2)+2 x +2}{x}\right )}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 34, normalized size = 1.13 \begin {gather*} \frac {12 \, {\left (x^{2} - 6 \, x\right )}}{x^{2} - 3 \, x - \log \relax (2) - \log \left (x - \log \relax (2) + 1\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \left (\frac {2\,x-2\,\ln \relax (2)+2}{x}\right )\,\left (96\,x+2\,\ln \relax (2)\,\left (24\,x-72\right )-48\,x^2+144\right )-2\,\ln \relax (2)\,\left (36\,x^2-12\,x+72\right )-24\,x+72\,x^2+72\,x^3+144}{{\ln \left (\frac {2\,x-2\,\ln \relax (2)+2}{x}\right )}^2\,\left (2\,x-2\,\ln \relax (2)+2\right )-2\,\ln \relax (2)\,\left (x^4-6\,x^3+9\,x^2\right )+18\,x^2+6\,x^3-10\,x^4+2\,x^5+\ln \left (\frac {2\,x-2\,\ln \relax (2)+2}{x}\right )\,\left (12\,x-2\,\ln \relax (2)\,\left (6\,x-2\,x^2\right )+8\,x^2-4\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 27, normalized size = 0.90 \begin {gather*} \frac {- 12 x^{2} + 72 x}{- x^{2} + 3 x + \log {\left (\frac {2 x - 2 \log {\relax (2 )} + 2}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________