Optimal. Leaf size=22 \[ \frac {x^2}{\frac {9}{2}-\frac {1}{4} \left (3+e^2\right ) x \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {144 x+12 x^2+4 e^2 x^2+\left (-12 x^2-4 e^2 x^2\right ) \log (x)}{324+\left (-108 x-36 e^2 x\right ) \log (x)+\left (9 x^2+6 e^2 x^2+e^4 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {144 x+\left (12+4 e^2\right ) x^2+\left (-12 x^2-4 e^2 x^2\right ) \log (x)}{324+\left (-108 x-36 e^2 x\right ) \log (x)+\left (9 x^2+6 e^2 x^2+e^4 x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {4 x \left (36+\left (3+e^2\right ) x-\left (3+e^2\right ) x \log (x)\right )}{\left (18-\left (3+e^2\right ) x \log (x)\right )^2} \, dx\\ &=4 \int \frac {x \left (36+\left (3+e^2\right ) x-\left (3+e^2\right ) x \log (x)\right )}{\left (18-\left (3+e^2\right ) x \log (x)\right )^2} \, dx\\ &=4 \int \left (\frac {x \left (18+\left (3+e^2\right ) x\right )}{\left (18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)\right )^2}+\frac {x}{18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)}\right ) \, dx\\ &=4 \int \frac {x \left (18+\left (3+e^2\right ) x\right )}{\left (18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)\right )^2} \, dx+4 \int \frac {x}{18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)} \, dx\\ &=4 \int \frac {x}{18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)} \, dx+4 \int \left (\frac {18 x}{\left (18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)\right )^2}+\frac {\left (3+e^2\right ) x^2}{\left (18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)\right )^2}\right ) \, dx\\ &=4 \int \frac {x}{18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)} \, dx+72 \int \frac {x}{\left (18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)\right )^2} \, dx+\left (4 \left (3+e^2\right )\right ) \int \frac {x^2}{\left (18-3 \left (1+\frac {e^2}{3}\right ) x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 18, normalized size = 0.82 \begin {gather*} -\frac {4 x^2}{-18+\left (3+e^2\right ) x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 20, normalized size = 0.91 \begin {gather*} -\frac {4 \, x^{2}}{{\left (x e^{2} + 3 \, x\right )} \log \relax (x) - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 20, normalized size = 0.91 \begin {gather*} -\frac {4 \, x^{2}}{x e^{2} \log \relax (x) + 3 \, x \log \relax (x) - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 21, normalized size = 0.95
method | result | size |
norman | \(-\frac {4 x^{2}}{x \,{\mathrm e}^{2} \ln \relax (x )+3 x \ln \relax (x )-18}\) | \(21\) |
risch | \(-\frac {4 x^{2}}{x \,{\mathrm e}^{2} \ln \relax (x )+3 x \ln \relax (x )-18}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 17, normalized size = 0.77 \begin {gather*} -\frac {4 \, x^{2}}{x {\left (e^{2} + 3\right )} \log \relax (x) - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {144\,x-\ln \relax (x)\,\left (4\,x^2\,{\mathrm {e}}^2+12\,x^2\right )+4\,x^2\,{\mathrm {e}}^2+12\,x^2}{\left (6\,x^2\,{\mathrm {e}}^2+x^2\,{\mathrm {e}}^4+9\,x^2\right )\,{\ln \relax (x)}^2+\left (-108\,x-36\,x\,{\mathrm {e}}^2\right )\,\ln \relax (x)+324} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.86 \begin {gather*} - \frac {4 x^{2}}{\left (3 x + x e^{2}\right ) \log {\relax (x )} - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________