Optimal. Leaf size=32 \[ x-e^{-e^{\frac {-4-x+x^2+(5-5 x) x^2}{x}}} x \]
________________________________________________________________________________________
Rubi [F] time = 2.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^{\frac {-4-x+6 x^2-5 x^3}{x}}} \left (-x+e^{e^{\frac {-4-x+6 x^2-5 x^3}{x}}} x+e^{\frac {-4-x+6 x^2-5 x^3}{x}} \left (4+6 x^2-10 x^3\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^{-1-\frac {4}{x}+6 x-5 x^2}} \left (-x+e^{e^{\frac {-4-x+6 x^2-5 x^3}{x}}} x+e^{\frac {-4-x+6 x^2-5 x^3}{x}} \left (4+6 x^2-10 x^3\right )\right )}{x} \, dx\\ &=\int \left (1-e^{-e^{-1-\frac {4}{x}+6 x-5 x^2}}-\frac {2 \exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right ) \left (-2-3 x^2+5 x^3\right )}{x}\right ) \, dx\\ &=x-2 \int \frac {\exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right ) \left (-2-3 x^2+5 x^3\right )}{x} \, dx-\int e^{-e^{-1-\frac {4}{x}+6 x-5 x^2}} \, dx\\ &=x-2 \int \left (-\frac {2 \exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right )}{x}-3 \exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right ) x+5 \exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right ) x^2\right ) \, dx-\int e^{-e^{-1-\frac {4}{x}+6 x-5 x^2}} \, dx\\ &=x+4 \int \frac {\exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right )}{x} \, dx+6 \int \exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right ) x \, dx-10 \int \exp \left (-1-e^{-1-\frac {4}{x}+6 x-5 x^2}-\frac {4}{x}+6 x-5 x^2\right ) x^2 \, dx-\int e^{-e^{-1-\frac {4}{x}+6 x-5 x^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.52, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{-e^{\frac {-4-x+6 x^2-5 x^3}{x}}} \left (-x+e^{e^{\frac {-4-x+6 x^2-5 x^3}{x}}} x+e^{\frac {-4-x+6 x^2-5 x^3}{x}} \left (4+6 x^2-10 x^3\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 49, normalized size = 1.53 \begin {gather*} {\left (x e^{\left (e^{\left (-\frac {5 \, x^{3} - 6 \, x^{2} + x + 4}{x}\right )}\right )} - x\right )} e^{\left (-e^{\left (-\frac {5 \, x^{3} - 6 \, x^{2} + x + 4}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, {\left (5 \, x^{3} - 3 \, x^{2} - 2\right )} e^{\left (-\frac {5 \, x^{3} - 6 \, x^{2} + x + 4}{x}\right )} - x e^{\left (e^{\left (-\frac {5 \, x^{3} - 6 \, x^{2} + x + 4}{x}\right )}\right )} + x\right )} e^{\left (-e^{\left (-\frac {5 \, x^{3} - 6 \, x^{2} + x + 4}{x}\right )}\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 28, normalized size = 0.88
method | result | size |
risch | \(x -x \,{\mathrm e}^{-{\mathrm e}^{-\frac {5 x^{3}-6 x^{2}+x +4}{x}}}\) | \(28\) |
norman | \(\left (x \,{\mathrm e}^{{\mathrm e}^{\frac {-5 x^{3}+6 x^{2}-x -4}{x}}}-x \right ) {\mathrm e}^{-{\mathrm e}^{\frac {-5 x^{3}+6 x^{2}-x -4}{x}}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \int \frac {{\left (x e^{\left (5 \, x^{2} + \frac {4}{x} + 1\right )} + 2 \, {\left (5 \, x^{3} - 3 \, x^{2} - 2\right )} e^{\left (6 \, x\right )}\right )} e^{\left (-5 \, x^{2} - \frac {4}{x} - e^{\left (-5 \, x^{2} + 6 \, x - \frac {4}{x} - 1\right )} - 1\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.34, size = 26, normalized size = 0.81 \begin {gather*} -x\,\left ({\mathrm {e}}^{-{\mathrm {e}}^{6\,x}\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{-\frac {4}{x}}\,{\mathrm {e}}^{-5\,x^2}}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________