Optimal. Leaf size=33 \[ 4 e^{4+x-x^2+\frac {3-\log (3)}{-1+e^{2 x}}}-\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 85.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+2 e^{2 x}-e^{4 x}+\exp \left (\frac {-1-x+x^2-\log (3)-\log (4)+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) \left (x-2 x^2+e^{4 x} \left (x-2 x^2\right )+e^{2 x} \left (-8 x+4 x^2+2 x \log (3)\right )\right )}{x-2 e^{2 x} x+e^{4 x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+2 e^{2 x}-e^{4 x}+\exp \left (\frac {-1-x+x^2-\log (3)-\log (4)+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) \left (x-2 x^2+e^{4 x} \left (x-2 x^2\right )+e^{2 x} \left (-8 x+4 x^2+2 x \log (3)\right )\right )}{\left (1-e^{2 x}\right )^2 x} \, dx\\ &=\int \left (-\frac {1}{\left (-1+e^{2 x}\right )^2 x}+\frac {2 e^{2 x}}{\left (-1+e^{2 x}\right )^2 x}-\frac {e^{4 x}}{\left (-1+e^{2 x}\right )^2 x}+\frac {12^{\frac {1}{1-e^{2 x}}} \exp \left (-\frac {1+x-e^{2 x} x-x^2+e^{2 x} x^2-4 e^{2 x} \left (1+\frac {\log (2)}{2}\right )}{-1+e^{2 x}}\right ) \left (1+e^{4 x}-2 x+4 e^{2 x} x-2 e^{4 x} x-8 e^{2 x} \left (1-\frac {\log (3)}{4}\right )\right )}{\left (1-e^{2 x}\right )^2}\right ) \, dx\\ &=2 \int \frac {e^{2 x}}{\left (-1+e^{2 x}\right )^2 x} \, dx-\int \frac {1}{\left (-1+e^{2 x}\right )^2 x} \, dx-\int \frac {e^{4 x}}{\left (-1+e^{2 x}\right )^2 x} \, dx+\int \frac {12^{\frac {1}{1-e^{2 x}}} \exp \left (-\frac {1+x-e^{2 x} x-x^2+e^{2 x} x^2-4 e^{2 x} \left (1+\frac {\log (2)}{2}\right )}{-1+e^{2 x}}\right ) \left (1+e^{4 x}-2 x+4 e^{2 x} x-2 e^{4 x} x-8 e^{2 x} \left (1-\frac {\log (3)}{4}\right )\right )}{\left (1-e^{2 x}\right )^2} \, dx\\ &=\frac {1}{\left (1-e^{2 x}\right ) x}-\int \left (\frac {1}{x}+\frac {1}{\left (-1+e^{2 x}\right )^2 x}+\frac {2}{\left (-1+e^{2 x}\right ) x}\right ) \, dx-\int \frac {1}{\left (-1+e^{2 x}\right ) x^2} \, dx-\int \frac {1}{\left (-1+e^{2 x}\right )^2 x} \, dx+\int \frac {12^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) \left (1+e^{4 x} (1-2 x)-2 x+2 e^{2 x} (-4+2 x+\log (3))\right )}{\left (1-e^{2 x}\right )^2} \, dx\\ &=\frac {1}{\left (1-e^{2 x}\right ) x}-\log (x)-2 \int \frac {1}{\left (-1+e^{2 x}\right ) x} \, dx-\int \frac {1}{\left (-1+e^{2 x}\right ) x^2} \, dx-2 \int \frac {1}{\left (-1+e^{2 x}\right )^2 x} \, dx+\int \left (12^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )-2^{1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) x+\frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) (-3+\log (3))}{\left (-1+e^x\right )^2}+\frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) (-3+\log (3))}{-1+e^x}+\frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) (-3+\log (3))}{\left (1+e^x\right )^2}-\frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) (-3+\log (3))}{1+e^x}\right ) \, dx\\ &=\frac {1}{\left (1-e^{2 x}\right ) x}-\log (x)-2 \int \frac {1}{\left (-1+e^{2 x}\right ) x} \, dx+(3-\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{1+e^x} \, dx+(-3+\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{\left (-1+e^x\right )^2} \, dx+(-3+\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{-1+e^x} \, dx+(-3+\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{\left (1+e^x\right )^2} \, dx+\int 12^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) \, dx-\int \frac {1}{\left (-1+e^{2 x}\right ) x^2} \, dx-2 \int \frac {1}{\left (-1+e^{2 x}\right )^2 x} \, dx-\int 2^{1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) x \, dx\\ &=\frac {1}{\left (1-e^{2 x}\right ) x}-\log (x)-2 \int \frac {1}{\left (-1+e^{2 x}\right ) x} \, dx+(3-\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{1+e^x} \, dx+(-3+\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{\left (-1+e^x\right )^2} \, dx+(-3+\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{-1+e^x} \, dx+(-3+\log (3)) \int \frac {2^{-1+\frac {2}{1-e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right )}{\left (1+e^x\right )^2} \, dx+\int 12^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) \, dx-\int \frac {1}{\left (-1+e^{2 x}\right ) x^2} \, dx-2 \int \frac {1}{\left (-1+e^{2 x}\right )^2 x} \, dx-\int 2^{\frac {-3+e^{2 x}}{-1+e^{2 x}}} 3^{\frac {1}{1-e^{2 x}}} \exp \left (\frac {-1-x+x^2+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 8.60, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-1+2 e^{2 x}-e^{4 x}+e^{\frac {-1-x+x^2-\log (3)-\log (4)+e^{2 x} \left (4+x-x^2+\log (4)\right )}{-1+e^{2 x}}} \left (x-2 x^2+e^{4 x} \left (x-2 x^2\right )+e^{2 x} \left (-8 x+4 x^2+2 x \log (3)\right )\right )}{x-2 e^{2 x} x+e^{4 x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 49, normalized size = 1.48 \begin {gather*} e^{\left (\frac {x^{2} - {\left (x^{2} - x - 2 \, \log \relax (2) - 4\right )} e^{\left (2 \, x\right )} - x - \log \relax (3) - 2 \, \log \relax (2) - 1}{e^{\left (2 \, x\right )} - 1}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.91, size = 55, normalized size = 1.67 \begin {gather*} 12 \, e^{\left (-\frac {x^{2} e^{\left (2 \, x\right )} - x^{2} - x e^{\left (2 \, x\right )} + e^{\left (2 \, x\right )} \log \relax (3) + x - 3 \, e^{\left (2 \, x\right )}}{e^{\left (2 \, x\right )} - 1} + 1\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 61, normalized size = 1.85
method | result | size |
risch | \(-\ln \relax (x )+{\mathrm e}^{\frac {-{\mathrm e}^{2 x} x^{2}+2 \ln \relax (2) {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x}+x^{2}-\ln \relax (3)-2 \ln \relax (2)+4 \,{\mathrm e}^{2 x}-x -1}{{\mathrm e}^{2 x}-1}}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.85, size = 125, normalized size = 3.79 \begin {gather*} e^{\left (-\frac {x^{2} e^{\left (2 \, x\right )}}{e^{\left (2 \, x\right )} - 1} + \frac {x^{2}}{e^{\left (2 \, x\right )} - 1} + \frac {x e^{\left (2 \, x\right )}}{e^{\left (2 \, x\right )} - 1} + \frac {2 \, e^{\left (2 \, x\right )} \log \relax (2)}{e^{\left (2 \, x\right )} - 1} - \frac {x}{e^{\left (2 \, x\right )} - 1} + \frac {4 \, e^{\left (2 \, x\right )}}{e^{\left (2 \, x\right )} - 1} - \frac {\log \relax (3)}{e^{\left (2 \, x\right )} - 1} - \frac {2 \, \log \relax (2)}{e^{\left (2 \, x\right )} - 1} - \frac {1}{e^{\left (2 \, x\right )} - 1}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 132, normalized size = 4.00 \begin {gather*} \frac {2^{\frac {2\,{\mathrm {e}}^{2\,x}}{{\mathrm {e}}^{2\,x}-1}}\,{\mathrm {e}}^{-\frac {x}{{\mathrm {e}}^{2\,x}-1}}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{2\,x}}{{\mathrm {e}}^{2\,x}-1}}\,{\mathrm {e}}^{\frac {x^2}{{\mathrm {e}}^{2\,x}-1}}\,{\mathrm {e}}^{-\frac {1}{{\mathrm {e}}^{2\,x}-1}}\,{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^{2\,x}}{{\mathrm {e}}^{2\,x}-1}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{2\,x}}{{\mathrm {e}}^{2\,x}-1}}}{2^{\frac {2}{{\mathrm {e}}^{2\,x}-1}}\,3^{\frac {1}{{\mathrm {e}}^{2\,x}-1}}}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 42, normalized size = 1.27 \begin {gather*} e^{\frac {x^{2} - x + \left (- x^{2} + x + 2 \log {\relax (2 )} + 4\right ) e^{2 x} - 2 \log {\relax (2 )} - \log {\relax (3 )} - 1}{e^{2 x} - 1}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________