Optimal. Leaf size=22 \[ 9-\frac {x}{3+e^{\left (5+x+4 e^x x\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 8.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3+\exp \left (25+10 x+x^2+16 e^{2 x} x^2+e^x \left (40 x+8 x^2\right )\right ) \left (-1+10 x+2 x^2+e^x \left (40 x+56 x^2+8 x^3\right )+e^{2 x} \left (32 x^2+32 x^3\right )\right )}{9+6 \exp \left (25+10 x+x^2+16 e^{2 x} x^2+e^x \left (40 x+8 x^2\right )\right )+\exp \left (50+20 x+2 x^2+32 e^{2 x} x^2+2 e^x \left (40 x+8 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3+e^{\left (5+x+4 e^x x\right )^2} \left (-1+10 x+2 x^2+32 e^{2 x} x^2 (1+x)+8 e^x x \left (5+7 x+x^2\right )\right )}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx\\ &=\int \left (-\frac {6 x \left (5+20 e^x+x+28 e^x x+16 e^{2 x} x+4 e^x x^2+16 e^{2 x} x^2\right )}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}+\frac {-1+10 x+40 e^x x+2 x^2+56 e^x x^2+32 e^{2 x} x^2+8 e^x x^3+32 e^{2 x} x^3}{3+e^{\left (5+x+4 e^x x\right )^2}}\right ) \, dx\\ &=-\left (6 \int \frac {x \left (5+20 e^x+x+28 e^x x+16 e^{2 x} x+4 e^x x^2+16 e^{2 x} x^2\right )}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx\right )+\int \frac {-1+10 x+40 e^x x+2 x^2+56 e^x x^2+32 e^{2 x} x^2+8 e^x x^3+32 e^{2 x} x^3}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx\\ &=-\left (6 \int \frac {x \left (5+x+16 e^{2 x} x (1+x)+4 e^x \left (5+7 x+x^2\right )\right )}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx\right )+\int \left (-\frac {1}{3+e^{\left (5+x+4 e^x x\right )^2}}+\frac {10 x}{3+e^{\left (5+x+4 e^x x\right )^2}}+\frac {40 e^x x}{3+e^{\left (5+x+4 e^x x\right )^2}}+\frac {2 x^2}{3+e^{\left (5+x+4 e^x x\right )^2}}+\frac {56 e^x x^2}{3+e^{\left (5+x+4 e^x x\right )^2}}+\frac {32 e^{2 x} x^2}{3+e^{\left (5+x+4 e^x x\right )^2}}+\frac {8 e^x x^3}{3+e^{\left (5+x+4 e^x x\right )^2}}+\frac {32 e^{2 x} x^3}{3+e^{\left (5+x+4 e^x x\right )^2}}\right ) \, dx\\ &=2 \int \frac {x^2}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx-6 \int \left (\frac {5 x}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}+\frac {20 e^x x}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}+\frac {x^2}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}+\frac {28 e^x x^2}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}+\frac {16 e^{2 x} x^2}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}+\frac {4 e^x x^3}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}+\frac {16 e^{2 x} x^3}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2}\right ) \, dx+8 \int \frac {e^x x^3}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+10 \int \frac {x}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+32 \int \frac {e^{2 x} x^2}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+32 \int \frac {e^{2 x} x^3}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+40 \int \frac {e^x x}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+56 \int \frac {e^x x^2}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx-\int \frac {1}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx\\ &=2 \int \frac {x^2}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx-6 \int \frac {x^2}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx+8 \int \frac {e^x x^3}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+10 \int \frac {x}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx-24 \int \frac {e^x x^3}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx-30 \int \frac {x}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx+32 \int \frac {e^{2 x} x^2}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+32 \int \frac {e^{2 x} x^3}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+40 \int \frac {e^x x}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx+56 \int \frac {e^x x^2}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx-96 \int \frac {e^{2 x} x^2}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx-96 \int \frac {e^{2 x} x^3}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx-120 \int \frac {e^x x}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx-168 \int \frac {e^x x^2}{\left (3+e^{\left (5+x+4 e^x x\right )^2}\right )^2} \, dx-\int \frac {1}{3+e^{\left (5+x+4 e^x x\right )^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.20, size = 20, normalized size = 0.91 \begin {gather*} -\frac {x}{3+e^{\left (5+x+4 e^x x\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 36, normalized size = 1.64 \begin {gather*} -\frac {x}{e^{\left (16 \, x^{2} e^{\left (2 \, x\right )} + x^{2} + 8 \, {\left (x^{2} + 5 \, x\right )} e^{x} + 10 \, x + 25\right )} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.68, size = 37, normalized size = 1.68 \begin {gather*} -\frac {x}{e^{\left (16 \, x^{2} e^{\left (2 \, x\right )} + 8 \, x^{2} e^{x} + x^{2} + 40 \, x e^{x} + 10 \, x + 25\right )} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 38, normalized size = 1.73
method | result | size |
risch | \(-\frac {x}{{\mathrm e}^{16 \,{\mathrm e}^{2 x} x^{2}+8 \,{\mathrm e}^{x} x^{2}+40 \,{\mathrm e}^{x} x +x^{2}+10 x +25}+3}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 37, normalized size = 1.68 \begin {gather*} -\frac {x}{e^{\left (16 \, x^{2} e^{\left (2 \, x\right )} + 8 \, x^{2} e^{x} + x^{2} + 40 \, x e^{x} + 10 \, x + 25\right )} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.63, size = 42, normalized size = 1.91 \begin {gather*} -\frac {x}{{\mathrm {e}}^{40\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{10\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{25}\,{\mathrm {e}}^{8\,x^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{16\,x^2\,{\mathrm {e}}^{2\,x}}+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.28, size = 36, normalized size = 1.64 \begin {gather*} - \frac {x}{e^{16 x^{2} e^{2 x} + x^{2} + 10 x + \left (8 x^{2} + 40 x\right ) e^{x} + 25} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________