Optimal. Leaf size=27 \[ e^{\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}}-x \]
________________________________________________________________________________________
Rubi [F] time = 31.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9 x+6 x^2-x^3+\left (6 x-2 x^2\right ) \log \left (\frac {4}{x^3}\right )-x \log ^2\left (\frac {4}{x^3}\right )+e^{\frac {e^{9+12 x+4 x^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}} \left (e^{9+12 x+4 x^2} \left (3-37 x-12 x^2+8 x^3\right )+e^{9+12 x+4 x^2} \left (12 x+8 x^2\right ) \log \left (\frac {4}{x^3}\right )\right )}{9 x-6 x^2+x^3+\left (-6 x+2 x^2\right ) \log \left (\frac {4}{x^3}\right )+x \log ^2\left (\frac {4}{x^3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-9 x+6 x^2-x^3+\left (6 x-2 x^2\right ) \log \left (\frac {4}{x^3}\right )-x \log ^2\left (\frac {4}{x^3}\right )+e^{\frac {e^{9+12 x+4 x^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}} \left (e^{9+12 x+4 x^2} \left (3-37 x-12 x^2+8 x^3\right )+e^{9+12 x+4 x^2} \left (12 x+8 x^2\right ) \log \left (\frac {4}{x^3}\right )\right )}{x \left (3-x-\log \left (\frac {4}{x^3}\right )\right )^2} \, dx\\ &=\int \left (-\frac {9}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}+\frac {6 x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}-\frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}-\frac {2 (-3+x) \log \left (\frac {4}{x^3}\right )}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}-\frac {\log ^2\left (\frac {4}{x^3}\right )}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}+\frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) \left (3-37 x-12 x^2+8 x^3+12 x \log \left (\frac {4}{x^3}\right )+8 x^2 \log \left (\frac {4}{x^3}\right )\right )}{x \left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {(-3+x) \log \left (\frac {4}{x^3}\right )}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx\right )+6 \int \frac {x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-9 \int \frac {1}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \frac {\log ^2\left (\frac {4}{x^3}\right )}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx+\int \frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) \left (3-37 x-12 x^2+8 x^3+12 x \log \left (\frac {4}{x^3}\right )+8 x^2 \log \left (\frac {4}{x^3}\right )\right )}{x \left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx\\ &=-\left (2 \int \left (-\frac {(-3+x)^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}+\frac {-3+x}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) \, dx\right )+6 \int \frac {x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-9 \int \frac {1}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \left (1+\frac {(-3+x)^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}-\frac {2 (-3+x)}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) \, dx+\int \left (\frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) (3-x)}{x \left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}+\frac {4 \exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) (3+2 x)}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) \, dx\\ &=-x+2 \int \frac {(-3+x)^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx+4 \int \frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) (3+2 x)}{-3+x+\log \left (\frac {4}{x^3}\right )} \, dx+6 \int \frac {x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-9 \int \frac {1}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \frac {(-3+x)^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx+\int \frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) (3-x)}{x \left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx\\ &=-x+2 \int \left (\frac {9}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}-\frac {6 x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}+\frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}\right ) \, dx+4 \int \left (\frac {3 \exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right )}{-3+x+\log \left (\frac {4}{x^3}\right )}+\frac {2 \exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) x}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) \, dx+6 \int \frac {x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-9 \int \frac {1}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx+\int \left (-\frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right )}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}+\frac {3 \exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right )}{x \left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}\right ) \, dx-\int \left (\frac {9}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}-\frac {6 x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}+\frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2}\right ) \, dx\\ &=-x+2 \int \frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx+3 \int \frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right )}{x \left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx+2 \left (6 \int \frac {x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx\right )+8 \int \frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right ) x}{-3+x+\log \left (\frac {4}{x^3}\right )} \, dx-2 \left (9 \int \frac {1}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx\right )-12 \int \frac {x}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx+12 \int \frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right )}{-3+x+\log \left (\frac {4}{x^3}\right )} \, dx+18 \int \frac {1}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-\int \frac {\exp \left (9+12 x+4 x^2+\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}\right )}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx-2 \int \frac {x^2}{\left (-3+x+\log \left (\frac {4}{x^3}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.92, size = 27, normalized size = 1.00 \begin {gather*} e^{\frac {e^{(3+2 x)^2}}{-3+x+\log \left (\frac {4}{x^3}\right )}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 28, normalized size = 1.04 \begin {gather*} -x + e^{\left (\frac {e^{\left (4 \, x^{2} + 12 \, x + 9\right )}}{x + \log \left (\frac {4}{x^{3}}\right ) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {x^{3} + x \log \left (\frac {4}{x^{3}}\right )^{2} - 6 \, x^{2} - {\left (4 \, {\left (2 \, x^{2} + 3 \, x\right )} e^{\left (4 \, x^{2} + 12 \, x + 9\right )} \log \left (\frac {4}{x^{3}}\right ) + {\left (8 \, x^{3} - 12 \, x^{2} - 37 \, x + 3\right )} e^{\left (4 \, x^{2} + 12 \, x + 9\right )}\right )} e^{\left (\frac {e^{\left (4 \, x^{2} + 12 \, x + 9\right )}}{x + \log \left (\frac {4}{x^{3}}\right ) - 3}\right )} + 2 \, {\left (x^{2} - 3 \, x\right )} \log \left (\frac {4}{x^{3}}\right ) + 9 \, x}{x^{3} + x \log \left (\frac {4}{x^{3}}\right )^{2} - 6 \, x^{2} + 2 \, {\left (x^{2} - 3 \, x\right )} \log \left (\frac {4}{x^{3}}\right ) + 9 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 44.92, size = 154, normalized size = 5.70
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {2 \,{\mathrm e}^{\left (2 x +3\right )^{2}}}{i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+4 \ln \relax (2)-6 \ln \relax (x )+2 x -6}}\) | \(154\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 59, normalized size = 2.19 \begin {gather*} -{\left (x e^{\left (-\frac {e^{\left (4 \, x^{2} + 12 \, x + 9\right )}}{x + 2 \, \log \relax (2) - 3 \, \log \relax (x) - 3}\right )} - 1\right )} e^{\left (\frac {e^{\left (4 \, x^{2} + 12 \, x + 9\right )}}{x + 2 \, \log \relax (2) - 3 \, \log \relax (x) - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.01, size = 29, normalized size = 1.07 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{12\,x}\,{\mathrm {e}}^9\,{\mathrm {e}}^{4\,x^2}}{x+\ln \left (\frac {4}{x^3}\right )-3}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.45, size = 24, normalized size = 0.89 \begin {gather*} - x + e^{\frac {e^{4 x^{2} + 12 x + 9}}{x + \log {\left (\frac {4}{x^{3}} \right )} - 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________