Optimal. Leaf size=33 \[ \log \left (\left (-e^x+\frac {4}{5-e^4-\frac {3 e^{e^{-2+x}}}{x}+x}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 15.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18 e^{2 e^{-2+x}+x}+8 x^2+e^{e^{-2+x}} \left (24-24 e^{-2+x} x+e^x \left (-60 x+12 e^4 x-12 x^2\right )\right )+e^x \left (50 x^2+2 e^8 x^2+20 x^3+2 x^4+e^4 \left (-20 x^2-4 x^3\right )\right )}{9 e^{2 e^{-2+x}+x}-20 x^2+4 e^4 x^2-4 x^3+e^{e^{-2+x}} \left (12 x+e^x \left (-30 x+6 e^4 x-6 x^2\right )\right )+e^x \left (25 x^2+e^8 x^2+10 x^3+x^4+e^4 \left (-10 x^2-2 x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 e^{2 e^{-2+x}+x}+8 x^2+e^{e^{-2+x}} \left (24-24 e^{-2+x} x+e^x \left (-60 x+12 e^4 x-12 x^2\right )\right )+e^x \left (50 x^2+2 e^8 x^2+20 x^3+2 x^4+e^4 \left (-20 x^2-4 x^3\right )\right )}{9 e^{2 e^{-2+x}+x}+\left (-20+4 e^4\right ) x^2-4 x^3+e^{e^{-2+x}} \left (12 x+e^x \left (-30 x+6 e^4 x-6 x^2\right )\right )+e^x \left (25 x^2+e^8 x^2+10 x^3+x^4+e^4 \left (-10 x^2-2 x^3\right )\right )} \, dx\\ &=\int \frac {18 e^{2 e^{-2+x}+x}+8 x^2+e^{e^{-2+x}} \left (24-24 e^{-2+x} x+e^x \left (-60 x+12 e^4 x-12 x^2\right )\right )+e^x \left (50 x^2+2 e^8 x^2+20 x^3+2 x^4+e^4 \left (-20 x^2-4 x^3\right )\right )}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right ) \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx\\ &=\int \left (\frac {2 \left (9 e^{2+2 e^{-2+x}}-12 e^{e^{-2+x}} \left (1-\frac {1}{2} e^2 \left (-5+e^4\right )\right ) x-6 e^{2+e^{-2+x}} x^2+25 e^2 \left (1+\frac {1}{25} e^4 \left (-10+e^4\right )\right ) x^2+10 e^2 \left (1-\frac {e^4}{5}\right ) x^3+e^2 x^4\right )}{e^2 \left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2}+\frac {8 \left (9 e^{2+2 e^{-2+x}}-9 e^{2+2 e^{-2+x}} x-15 e^{2+e^{-2+x}} \left (1-\frac {e^4}{5}\right ) x+12 e^{e^{-2+x}} \left (1-\frac {1}{2} e^2 \left (-5+e^4\right )\right ) x^2+6 e^{2+e^{-2+x}} x^3-30 e^2 \left (1+\frac {1}{30} e^4 \left (-11+e^4\right )\right ) x^3-11 e^2 \left (1-\frac {2 e^4}{11}\right ) x^4-e^2 x^5\right )}{e^2 \left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )}\right ) \, dx\\ &=\frac {2 \int \frac {9 e^{2+2 e^{-2+x}}-12 e^{e^{-2+x}} \left (1-\frac {1}{2} e^2 \left (-5+e^4\right )\right ) x-6 e^{2+e^{-2+x}} x^2+25 e^2 \left (1+\frac {1}{25} e^4 \left (-10+e^4\right )\right ) x^2+10 e^2 \left (1-\frac {e^4}{5}\right ) x^3+e^2 x^4}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2} \, dx}{e^2}+\frac {8 \int \frac {9 e^{2+2 e^{-2+x}}-9 e^{2+2 e^{-2+x}} x-15 e^{2+e^{-2+x}} \left (1-\frac {e^4}{5}\right ) x+12 e^{e^{-2+x}} \left (1-\frac {1}{2} e^2 \left (-5+e^4\right )\right ) x^2+6 e^{2+e^{-2+x}} x^3-30 e^2 \left (1+\frac {1}{30} e^4 \left (-11+e^4\right )\right ) x^3-11 e^2 \left (1-\frac {2 e^4}{11}\right ) x^4-e^2 x^5}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}\\ &=\frac {2 \int \left (e^2+\frac {4 \left (-5+e^4-x\right ) x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2}+\frac {4 x}{-3 e^{e^{-2+x}}+5 \left (1-\frac {e^4}{5}\right ) x+x^2}\right ) \, dx}{e^2}+\frac {8 \int \left (\frac {9 e^{2+2 e^{-2+x}}}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )}+\frac {3 e^{2+e^{-2+x}} \left (-5+e^4\right ) x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )}+\frac {6 e^{e^{-2+x}} \left (2+5 e^2-e^6\right ) x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )}+\frac {6 e^{2+e^{-2+x}} x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )}+\frac {e^2 \left (-30+11 e^4-e^8\right ) x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )}+\frac {e^2 \left (-11+2 e^4\right ) x^4}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )}+\frac {9 e^{2+2 e^{-2+x}} x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )}+\frac {e^2 x^5}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )}\right ) \, dx}{e^2}\\ &=2 x+8 \int \frac {x^5}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )} \, dx+\frac {8 \int \frac {\left (-5+e^4-x\right ) x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2} \, dx}{e^2}+\frac {8 \int \frac {x}{-3 e^{e^{-2+x}}+5 \left (1-\frac {e^4}{5}\right ) x+x^2} \, dx}{e^2}+\frac {48 \int \frac {e^{2+e^{-2+x}} x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {72 \int \frac {e^{2+2 e^{-2+x}}}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {72 \int \frac {e^{2+2 e^{-2+x}} x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )} \, dx}{e^2}-\left (8 \left (11-2 e^4\right )\right ) \int \frac {x^4}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx-\frac {\left (24 \left (5-e^4\right )\right ) \int \frac {e^{2+e^{-2+x}} x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {\left (48 \left (2+5 e^2-e^6\right )\right ) \int \frac {e^{e^{-2+x}} x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}-\left (8 \left (30-11 e^4+e^8\right )\right ) \int \frac {x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx\\ &=2 x+8 \int \frac {x^5}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )} \, dx+\frac {8 \int \frac {x}{-3 e^{e^{-2+x}}+5 \left (1-\frac {e^4}{5}\right ) x+x^2} \, dx}{e^2}+\frac {8 \int \left (\frac {\left (-5+e^4\right ) x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2}-\frac {x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2}\right ) \, dx}{e^2}+\frac {48 \int \frac {e^{2+e^{-2+x}} x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {72 \int \frac {e^{2+2 e^{-2+x}}}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {72 \int \frac {e^{2+2 e^{-2+x}} x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )} \, dx}{e^2}-\left (8 \left (11-2 e^4\right )\right ) \int \frac {x^4}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx-\frac {\left (24 \left (5-e^4\right )\right ) \int \frac {e^{2+e^{-2+x}} x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {\left (48 \left (2+5 e^2-e^6\right )\right ) \int \frac {e^{e^{-2+x}} x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}-\left (8 \left (30-11 e^4+e^8\right )\right ) \int \frac {x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx\\ &=2 x+8 \int \frac {x^5}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )} \, dx-\frac {8 \int \frac {x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2} \, dx}{e^2}+\frac {8 \int \frac {x}{-3 e^{e^{-2+x}}+5 \left (1-\frac {e^4}{5}\right ) x+x^2} \, dx}{e^2}+\frac {48 \int \frac {e^{2+e^{-2+x}} x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {72 \int \frac {e^{2+2 e^{-2+x}}}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {72 \int \frac {e^{2+2 e^{-2+x}} x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (-3 e^{e^{-2+x}+x}-4 x+5 e^x \left (1-\frac {e^4}{5}\right ) x+e^x x^2\right )} \, dx}{e^2}-\left (8 \left (11-2 e^4\right )\right ) \int \frac {x^4}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx-\frac {\left (8 \left (5-e^4\right )\right ) \int \frac {x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2} \, dx}{e^2}-\frac {\left (24 \left (5-e^4\right )\right ) \int \frac {e^{2+e^{-2+x}} x}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}+\frac {\left (48 \left (2+5 e^2-e^6\right )\right ) \int \frac {e^{e^{-2+x}} x^2}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx}{e^2}-\left (8 \left (30-11 e^4+e^8\right )\right ) \int \frac {x^3}{\left (3 e^{e^{-2+x}}-5 \left (1-\frac {e^4}{5}\right ) x-x^2\right )^2 \left (3 e^{e^{-2+x}+x}+4 x-5 e^x \left (1-\frac {e^4}{5}\right ) x-e^x x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.18, size = 76, normalized size = 2.30 \begin {gather*} \frac {2 \left (-e^2 \log \left (3 e^{e^{-2+x}}-5 x+e^4 x-x^2\right )+e^2 \log \left (3 e^{e^{-2+x}+x}+4 x-5 e^x x+e^{4+x} x-e^x x^2\right )\right )}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.97, size = 64, normalized size = 1.94 \begin {gather*} 2 \, x - 2 \, \log \left (-x^{2} + x e^{4} - 5 \, x + 3 \, e^{\left (e^{\left (x - 2\right )}\right )}\right ) + 2 \, \log \left (-{\left ({\left (x^{2} - x e^{4} + 5 \, x\right )} e^{x} - 4 \, x - 3 \, e^{\left (x + e^{\left (x - 2\right )}\right )}\right )} e^{\left (-x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.58, size = 61, normalized size = 1.85
method | result | size |
norman | \(-2 \ln \left (x \,{\mathrm e}^{4}-x^{2}-5 x +3 \,{\mathrm e}^{{\mathrm e}^{x} {\mathrm e}^{-2}}\right )+2 \ln \left (x \,{\mathrm e}^{4} {\mathrm e}^{x}-{\mathrm e}^{x} x^{2}-5 \,{\mathrm e}^{x} x +3 \,{\mathrm e}^{{\mathrm e}^{x} {\mathrm e}^{-2}} {\mathrm e}^{x}+4 x \right )\) | \(61\) |
risch | \(2 x +2 \ln \left ({\mathrm e}^{{\mathrm e}^{x -2}}-\frac {\left (x \,{\mathrm e}^{x -4}+5 \,{\mathrm e}^{x -4}-4 \,{\mathrm e}^{-4}-{\mathrm e}^{x}\right ) x \,{\mathrm e}^{-x +4}}{3}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x -2}}-\frac {x \left (x \,{\mathrm e}^{-4}+5 \,{\mathrm e}^{-4}-1\right ) {\mathrm e}^{4}}{3}\right )\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 61, normalized size = 1.85 \begin {gather*} 2 \, x - 2 \, \log \left (-\frac {1}{3} \, x^{2} + \frac {1}{3} \, x {\left (e^{4} - 5\right )} + e^{\left (e^{\left (x - 2\right )}\right )}\right ) + 2 \, \log \left (-\frac {1}{3} \, {\left ({\left (x^{2} - x {\left (e^{4} - 5\right )}\right )} e^{x} - 4 \, x - 3 \, e^{\left (x + e^{\left (x - 2\right )}\right )}\right )} e^{\left (-x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {18\,{\mathrm {e}}^{x+2\,{\mathrm {e}}^{x-2}}-{\mathrm {e}}^{{\mathrm {e}}^{x-2}}\,\left (24\,x\,{\mathrm {e}}^{x-2}+{\mathrm {e}}^x\,\left (60\,x-12\,x\,{\mathrm {e}}^4+12\,x^2\right )-24\right )+{\mathrm {e}}^x\,\left (2\,x^2\,{\mathrm {e}}^8-{\mathrm {e}}^4\,\left (4\,x^3+20\,x^2\right )+50\,x^2+20\,x^3+2\,x^4\right )+8\,x^2}{9\,{\mathrm {e}}^{x+2\,{\mathrm {e}}^{x-2}}+{\mathrm {e}}^x\,\left (x^2\,{\mathrm {e}}^8-{\mathrm {e}}^4\,\left (2\,x^3+10\,x^2\right )+25\,x^2+10\,x^3+x^4\right )+{\mathrm {e}}^{{\mathrm {e}}^{x-2}}\,\left (12\,x-{\mathrm {e}}^x\,\left (30\,x-6\,x\,{\mathrm {e}}^4+6\,x^2\right )\right )+4\,x^2\,{\mathrm {e}}^4-20\,x^2-4\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.89, size = 83, normalized size = 2.52 \begin {gather*} 2 x - 2 \log {\left (\frac {\left (- x^{2} e^{x} - 5 x e^{x} + x e^{4} e^{x}\right ) e^{- x}}{3} + e^{\frac {e^{x}}{e^{2}}} \right )} + 2 \log {\left (\frac {\left (- x^{2} e^{x} - 5 x e^{x} + x e^{4} e^{x} + 4 x\right ) e^{- x}}{3} + e^{\frac {e^{x}}{e^{2}}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________