Optimal. Leaf size=15 \[ 4+x-4 x \log ^2\left (x+\frac {1}{\log (4)}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 34, normalized size of antiderivative = 2.27, number of steps used = 10, number of rules used = 8, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6742, 2411, 12, 2346, 2301, 2295, 2389, 2296} \begin {gather*} x-4 \left (x+\frac {1}{\log (4)}\right ) \log ^2\left (x+\frac {1}{\log (4)}\right )+\frac {4 \log ^2\left (x+\frac {1}{\log (4)}\right )}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2296
Rule 2301
Rule 2346
Rule 2389
Rule 2411
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {8 x \log (4) \log \left (x+\frac {1}{\log (4)}\right )}{1+x \log (4)}-4 \log ^2\left (x+\frac {1}{\log (4)}\right )\right ) \, dx\\ &=x-4 \int \log ^2\left (x+\frac {1}{\log (4)}\right ) \, dx-(8 \log (4)) \int \frac {x \log \left (x+\frac {1}{\log (4)}\right )}{1+x \log (4)} \, dx\\ &=x-4 \operatorname {Subst}\left (\int \log ^2(x) \, dx,x,x+\frac {1}{\log (4)}\right )-(8 \log (4)) \operatorname {Subst}\left (\int \frac {\left (x-\frac {1}{\log (4)}\right ) \log (x)}{x \log (4)} \, dx,x,x+\frac {1}{\log (4)}\right )\\ &=x-4 \left (x+\frac {1}{\log (4)}\right ) \log ^2\left (x+\frac {1}{\log (4)}\right )+8 \operatorname {Subst}\left (\int \log (x) \, dx,x,x+\frac {1}{\log (4)}\right )-8 \operatorname {Subst}\left (\int \frac {\left (x-\frac {1}{\log (4)}\right ) \log (x)}{x} \, dx,x,x+\frac {1}{\log (4)}\right )\\ &=-7 x+8 \left (x+\frac {1}{\log (4)}\right ) \log \left (x+\frac {1}{\log (4)}\right )-4 \left (x+\frac {1}{\log (4)}\right ) \log ^2\left (x+\frac {1}{\log (4)}\right )-8 \operatorname {Subst}\left (\int \log (x) \, dx,x,x+\frac {1}{\log (4)}\right )+\frac {8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,x+\frac {1}{\log (4)}\right )}{\log (4)}\\ &=x-4 \left (x+\frac {1}{\log (4)}\right ) \log ^2\left (x+\frac {1}{\log (4)}\right )+\frac {4 \log ^2\left (x+\frac {1}{\log (4)}\right )}{\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 14, normalized size = 0.93 \begin {gather*} x-4 x \log ^2\left (x+\frac {1}{\log (4)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 21, normalized size = 1.40 \begin {gather*} -4 \, x \log \left (\frac {2 \, x \log \relax (2) + 1}{2 \, \log \relax (2)}\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.48, size = 56, normalized size = 3.73 \begin {gather*} 8 \, x {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} \log \left (2 \, x \log \relax (2) + 1\right ) - 4 \, x \log \left (2 \, x \log \relax (2) + 1\right )^{2} - {\left (4 \, \log \relax (2)^{2} + 8 \, \log \relax (2) \log \left (\log \relax (2)\right ) + 4 \, \log \left (\log \relax (2)\right )^{2} - 1\right )} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 22, normalized size = 1.47
method | result | size |
norman | \(x -4 x \ln \left (\frac {2 x \ln \relax (2)+1}{2 \ln \relax (2)}\right )^{2}\) | \(22\) |
risch | \(x -4 x \ln \left (\frac {2 x \ln \relax (2)+1}{2 \ln \relax (2)}\right )^{2}\) | \(22\) |
derivativedivides | \(-4 \left (\frac {1}{2 \ln \relax (2)}+x \right ) \ln \left (\frac {1}{2 \ln \relax (2)}+x \right )^{2}+\frac {1}{2 \ln \relax (2)}+x +\frac {2 \ln \left (\frac {1}{2 \ln \relax (2)}+x \right )^{2}}{\ln \relax (2)}\) | \(47\) |
default | \(-4 \left (\frac {1}{2 \ln \relax (2)}+x \right ) \ln \left (\frac {1}{2 \ln \relax (2)}+x \right )^{2}+\frac {1}{2 \ln \relax (2)}+x +\frac {2 \ln \left (\frac {1}{2 \ln \relax (2)}+x \right )^{2}}{\ln \relax (2)}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.83, size = 187, normalized size = 12.47 \begin {gather*} -4 \, {\left (\frac {2 \, x}{\log \relax (2)} - \frac {\log \left (2 \, x \log \relax (2) + 1\right )}{\log \relax (2)^{2}}\right )} \log \relax (2) \log \left (x + \frac {1}{2 \, \log \relax (2)}\right ) + \frac {1}{2} \, {\left (\frac {2 \, x}{\log \relax (2)} - \frac {\log \left (2 \, x \log \relax (2) + 1\right )}{\log \relax (2)^{2}}\right )} \log \relax (2) - \frac {2 \, \log \left (x + \frac {1}{2 \, \log \relax (2)}\right )^{3}}{3 \, \log \relax (2)} + \frac {2 \, {\left (\log \left (x + \frac {1}{2 \, \log \relax (2)}\right )^{3} - 3 \, {\left (\log \relax (2) \log \left (x + \frac {1}{2 \, \log \relax (2)}\right )^{2} - 2 \, \log \relax (2) \log \left (x + \frac {1}{2 \, \log \relax (2)}\right ) + 2 \, \log \relax (2)\right )} {\left (2 \, x + \frac {1}{\log \relax (2)}\right )}\right )}}{3 \, \log \relax (2)} + \frac {2 \, {\left (4 \, x \log \relax (2) - \log \left (2 \, x \log \relax (2) + 1\right )^{2} - 2 \, \log \left (2 \, x \log \relax (2) + 1\right )\right )}}{\log \relax (2)} + \frac {\log \left (2 \, x \log \relax (2) + 1\right )}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.53, size = 62, normalized size = 4.13 \begin {gather*} -x\,\left (4\,{\ln \left (\ln \relax (2)\right )}^2-8\,\ln \left (2\,x\,\ln \relax (2)+1\right )\,\ln \left (\ln \relax (2)\right )+4\,{\ln \left (2\,x\,\ln \relax (2)+1\right )}^2+8\,\ln \relax (2)\,\ln \left (\ln \relax (2)\right )+4\,{\ln \relax (2)}^2-8\,\ln \left (2\,x\,\ln \relax (2)+1\right )\,\ln \relax (2)-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 1.27 \begin {gather*} - 4 x \log {\left (\frac {x \log {\relax (2 )} + \frac {1}{2}}{\log {\relax (2 )}} \right )}^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________