Optimal. Leaf size=31 \[ 12 \left (1-e^{e^x-x} x+5 \log \left (x^2 \log ^2\left (\frac {2}{x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-120+120 \log \left (\frac {2}{x}\right )+e^{e^x-x} \left (-12 x+12 x^2-12 e^x x^2\right ) \log \left (\frac {2}{x}\right )}{x \log \left (\frac {2}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (12 e^{e^x-x} (-1+x)-\frac {12 \left (10-10 \log \left (\frac {2}{x}\right )+e^{e^x} x^2 \log \left (\frac {2}{x}\right )\right )}{x \log \left (\frac {2}{x}\right )}\right ) \, dx\\ &=12 \int e^{e^x-x} (-1+x) \, dx-12 \int \frac {10-10 \log \left (\frac {2}{x}\right )+e^{e^x} x^2 \log \left (\frac {2}{x}\right )}{x \log \left (\frac {2}{x}\right )} \, dx\\ &=12 \int \left (-e^{e^x-x}+e^{e^x-x} x\right ) \, dx-12 \int \frac {-10+e^{e^x} x^2+\frac {10}{\log \left (\frac {2}{x}\right )}}{x} \, dx\\ &=-\left (12 \int e^{e^x-x} \, dx\right )+12 \int e^{e^x-x} x \, dx-12 \int \left (e^{e^x} x-\frac {10 \left (-1+\log \left (\frac {2}{x}\right )\right )}{x \log \left (\frac {2}{x}\right )}\right ) \, dx\\ &=-\left (12 \int e^{e^x} x \, dx\right )+12 \int e^{e^x-x} x \, dx-12 \operatorname {Subst}\left (\int \frac {e^x}{x^2} \, dx,x,e^x\right )+120 \int \frac {-1+\log \left (\frac {2}{x}\right )}{x \log \left (\frac {2}{x}\right )} \, dx\\ &=12 e^{e^x-x}-12 \int e^{e^x} x \, dx+12 \int e^{e^x-x} x \, dx-12 \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )-120 \operatorname {Subst}\left (\int \frac {-1+x}{x} \, dx,x,\log \left (\frac {2}{x}\right )\right )\\ &=12 e^{e^x-x}-12 \text {Ei}\left (e^x\right )-12 \int e^{e^x} x \, dx+12 \int e^{e^x-x} x \, dx-120 \operatorname {Subst}\left (\int \left (1-\frac {1}{x}\right ) \, dx,x,\log \left (\frac {2}{x}\right )\right )\\ &=12 e^{e^x-x}-12 \text {Ei}\left (e^x\right )+120 \log (x)+120 \log \left (\log \left (\frac {2}{x}\right )\right )-12 \int e^{e^x} x \, dx+12 \int e^{e^x-x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 28, normalized size = 0.90 \begin {gather*} 12 \left (-e^{e^x-x} x+10 \log (x)+10 \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 28, normalized size = 0.90 \begin {gather*} -12 \, x e^{\left (-x + e^{x}\right )} - 120 \, \log \left (\frac {2}{x}\right ) + 120 \, \log \left (\log \left (\frac {2}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 0.77 \begin {gather*} -12 \, x e^{\left (-x + e^{x}\right )} + 120 \, \log \relax (x) + 120 \, \log \left (\log \left (\frac {2}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 26, normalized size = 0.84
method | result | size |
risch | \(120 \ln \relax (x )+120 \ln \left (\ln \relax (x )-\ln \relax (2)\right )-12 \,{\mathrm e}^{{\mathrm e}^{x}-x} x\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 24, normalized size = 0.77 \begin {gather*} -12 \, x e^{\left (-x + e^{x}\right )} + 120 \, \log \relax (x) + 120 \, \log \left (\log \left (\frac {2}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.32, size = 24, normalized size = 0.77 \begin {gather*} 120\,\ln \left (\ln \left (\frac {2}{x}\right )\right )+120\,\ln \relax (x)-12\,x\,{\mathrm {e}}^{{\mathrm {e}}^x-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 22, normalized size = 0.71 \begin {gather*} - 12 x e^{- x + e^{x}} + 120 \log {\relax (x )} + 120 \log {\left (\log {\left (\frac {2}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________