Optimal. Leaf size=24 \[ \frac {1}{5} x \left (5+x+x^2+\frac {x+\log (\log (x))}{5-2 x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5-2 x+\left (125-40 x+53 x^2-52 x^3+12 x^4\right ) \log (x)+5 \log (x) \log (\log (x))}{\left (125-100 x+20 x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5-2 x+\left (125-40 x+53 x^2-52 x^3+12 x^4\right ) \log (x)+5 \log (x) \log (\log (x))}{5 (-5+2 x)^2 \log (x)} \, dx\\ &=\frac {1}{5} \int \frac {5-2 x+\left (125-40 x+53 x^2-52 x^3+12 x^4\right ) \log (x)+5 \log (x) \log (\log (x))}{(-5+2 x)^2 \log (x)} \, dx\\ &=\frac {1}{5} \int \left (\frac {5-2 x+125 \log (x)-40 x \log (x)+53 x^2 \log (x)-52 x^3 \log (x)+12 x^4 \log (x)}{(-5+2 x)^2 \log (x)}+\frac {5 \log (\log (x))}{(-5+2 x)^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {5-2 x+125 \log (x)-40 x \log (x)+53 x^2 \log (x)-52 x^3 \log (x)+12 x^4 \log (x)}{(-5+2 x)^2 \log (x)} \, dx+\int \frac {\log (\log (x))}{(-5+2 x)^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {125}{(-5+2 x)^2}-\frac {40 x}{(-5+2 x)^2}+\frac {53 x^2}{(-5+2 x)^2}-\frac {52 x^3}{(-5+2 x)^2}+\frac {12 x^4}{(-5+2 x)^2}-\frac {1}{(-5+2 x) \log (x)}\right ) \, dx+\int \frac {\log (\log (x))}{(-5+2 x)^2} \, dx\\ &=\frac {25}{2 (5-2 x)}-\frac {1}{5} \int \frac {1}{(-5+2 x) \log (x)} \, dx+\frac {12}{5} \int \frac {x^4}{(-5+2 x)^2} \, dx-8 \int \frac {x}{(-5+2 x)^2} \, dx-\frac {52}{5} \int \frac {x^3}{(-5+2 x)^2} \, dx+\frac {53}{5} \int \frac {x^2}{(-5+2 x)^2} \, dx+\int \frac {\log (\log (x))}{(-5+2 x)^2} \, dx\\ &=\frac {25}{2 (5-2 x)}-\frac {1}{5} \int \frac {1}{(-5+2 x) \log (x)} \, dx+\frac {12}{5} \int \left (\frac {75}{16}+\frac {5 x}{4}+\frac {x^2}{4}+\frac {625}{16 (-5+2 x)^2}+\frac {125}{4 (-5+2 x)}\right ) \, dx-8 \int \left (\frac {5}{2 (-5+2 x)^2}+\frac {1}{2 (-5+2 x)}\right ) \, dx-\frac {52}{5} \int \left (\frac {5}{4}+\frac {x}{4}+\frac {125}{8 (-5+2 x)^2}+\frac {75}{8 (-5+2 x)}\right ) \, dx+\frac {53}{5} \int \left (\frac {1}{4}+\frac {25}{4 (-5+2 x)^2}+\frac {5}{2 (-5+2 x)}\right ) \, dx+\int \frac {\log (\log (x))}{(-5+2 x)^2} \, dx\\ &=\frac {5}{4 (5-2 x)}+\frac {9 x}{10}+\frac {x^2}{5}+\frac {x^3}{5}-\frac {1}{5} \int \frac {1}{(-5+2 x) \log (x)} \, dx+\int \frac {\log (\log (x))}{(-5+2 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 37, normalized size = 1.54 \begin {gather*} \frac {25+90 x-16 x^2+12 x^3-8 x^4+4 x \log (\log (x))}{5 (20-8 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 35, normalized size = 1.46 \begin {gather*} \frac {8 \, x^{4} - 12 \, x^{3} + 16 \, x^{2} - 4 \, x \log \left (\log \relax (x)\right ) - 90 \, x - 25}{20 \, {\left (2 \, x - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 40, normalized size = 1.67 \begin {gather*} \frac {1}{5} \, x^{3} + \frac {1}{5} \, x^{2} + \frac {9}{10} \, x - \frac {\log \left (\log \relax (x)\right )}{2 \, {\left (2 \, x - 5\right )}} - \frac {5}{4 \, {\left (2 \, x - 5\right )}} - \frac {1}{10} \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.38, size = 54, normalized size = 2.25
method | result | size |
risch | \(-\frac {\ln \left (\ln \relax (x )\right )}{2 \left (2 x -5\right )}-\frac {-8 x^{4}+12 x^{3}+4 x \ln \left (\ln \relax (x )\right )-16 x^{2}-10 \ln \left (\ln \relax (x )\right )+90 x +25}{20 \left (2 x -5\right )}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 35, normalized size = 1.46 \begin {gather*} \frac {8 \, x^{4} - 12 \, x^{3} + 16 \, x^{2} - 4 \, x \log \left (\log \relax (x)\right ) - 90 \, x - 25}{20 \, {\left (2 \, x - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.30, size = 40, normalized size = 1.67 \begin {gather*} \frac {9\,x}{10}-\frac {\ln \left (\ln \relax (x)\right )}{10}-\frac {5}{8\,\left (x-\frac {5}{2}\right )}+\frac {x^2}{5}+\frac {x^3}{5}-\frac {\ln \left (\ln \relax (x)\right )}{4\,\left (x-\frac {5}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 37, normalized size = 1.54 \begin {gather*} \frac {x^{3}}{5} + \frac {x^{2}}{5} + \frac {9 x}{10} - \frac {\log {\left (\log {\relax (x )} \right )}}{10} - \frac {5}{8 x - 20} - \frac {\log {\left (\log {\relax (x )} \right )}}{4 x - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________