Optimal. Leaf size=26 \[ \frac {(4+x) \left (\frac {1}{e^2}-x^2 \left (x+\frac {x}{\log (x)}\right )^4\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.22, antiderivative size = 91, normalized size of antiderivative = 3.50, number of steps used = 55, number of rules used = 7, integrand size = 123, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 6742, 14, 2353, 2306, 2309, 2178} \begin {gather*} -x^6-\frac {x^6}{\log ^4(x)}-\frac {4 x^6}{\log ^3(x)}-\frac {6 x^6}{\log ^2(x)}-\frac {4 x^6}{\log (x)}-4 x^5-\frac {4 x^5}{\log ^4(x)}-\frac {16 x^5}{\log ^3(x)}-\frac {24 x^5}{\log ^2(x)}-\frac {16 x^5}{\log (x)}+\frac {4}{e^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^2 \left (16 x^6+4 x^7\right )+e^2 \left (28 x^6+6 x^7\right ) \log (x)+e^2 \left (-32 x^6-12 x^7\right ) \log ^2(x)+e^2 \left (-104 x^6-32 x^7\right ) \log ^3(x)+e^2 \left (-80 x^6-24 x^7\right ) \log ^4(x)+\left (-4+e^2 \left (-20 x^6-6 x^7\right )\right ) \log ^5(x)}{x^2 \log ^5(x)} \, dx}{e^2}\\ &=\frac {\int \left (-\frac {2 \left (2+10 e^2 x^6+3 e^2 x^7\right )}{x^2}+\frac {4 e^2 x^4 (4+x)}{\log ^5(x)}+\frac {2 e^2 x^4 (14+3 x)}{\log ^4(x)}-\frac {4 e^2 x^4 (8+3 x)}{\log ^3(x)}-\frac {8 e^2 x^4 (13+4 x)}{\log ^2(x)}-\frac {8 e^2 x^4 (10+3 x)}{\log (x)}\right ) \, dx}{e^2}\\ &=2 \int \frac {x^4 (14+3 x)}{\log ^4(x)} \, dx+4 \int \frac {x^4 (4+x)}{\log ^5(x)} \, dx-4 \int \frac {x^4 (8+3 x)}{\log ^3(x)} \, dx-8 \int \frac {x^4 (13+4 x)}{\log ^2(x)} \, dx-8 \int \frac {x^4 (10+3 x)}{\log (x)} \, dx-\frac {2 \int \frac {2+10 e^2 x^6+3 e^2 x^7}{x^2} \, dx}{e^2}\\ &=2 \int \left (\frac {14 x^4}{\log ^4(x)}+\frac {3 x^5}{\log ^4(x)}\right ) \, dx+4 \int \left (\frac {4 x^4}{\log ^5(x)}+\frac {x^5}{\log ^5(x)}\right ) \, dx-4 \int \left (\frac {8 x^4}{\log ^3(x)}+\frac {3 x^5}{\log ^3(x)}\right ) \, dx-8 \int \left (\frac {13 x^4}{\log ^2(x)}+\frac {4 x^5}{\log ^2(x)}\right ) \, dx-8 \int \left (\frac {10 x^4}{\log (x)}+\frac {3 x^5}{\log (x)}\right ) \, dx-\frac {2 \int \left (\frac {2}{x^2}+10 e^2 x^4+3 e^2 x^5\right ) \, dx}{e^2}\\ &=\frac {4}{e^2 x}-4 x^5-x^6+4 \int \frac {x^5}{\log ^5(x)} \, dx+6 \int \frac {x^5}{\log ^4(x)} \, dx-12 \int \frac {x^5}{\log ^3(x)} \, dx+16 \int \frac {x^4}{\log ^5(x)} \, dx-24 \int \frac {x^5}{\log (x)} \, dx+28 \int \frac {x^4}{\log ^4(x)} \, dx-32 \int \frac {x^4}{\log ^3(x)} \, dx-32 \int \frac {x^5}{\log ^2(x)} \, dx-80 \int \frac {x^4}{\log (x)} \, dx-104 \int \frac {x^4}{\log ^2(x)} \, dx\\ &=\frac {4}{e^2 x}-4 x^5-x^6-\frac {4 x^5}{\log ^4(x)}-\frac {x^6}{\log ^4(x)}-\frac {28 x^5}{3 \log ^3(x)}-\frac {2 x^6}{\log ^3(x)}+\frac {16 x^5}{\log ^2(x)}+\frac {6 x^6}{\log ^2(x)}+\frac {104 x^5}{\log (x)}+\frac {32 x^6}{\log (x)}+6 \int \frac {x^5}{\log ^4(x)} \, dx+12 \int \frac {x^5}{\log ^3(x)} \, dx+20 \int \frac {x^4}{\log ^4(x)} \, dx-24 \operatorname {Subst}\left (\int \frac {e^{6 x}}{x} \, dx,x,\log (x)\right )-36 \int \frac {x^5}{\log ^2(x)} \, dx+\frac {140}{3} \int \frac {x^4}{\log ^3(x)} \, dx-80 \int \frac {x^4}{\log ^2(x)} \, dx-80 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )-192 \int \frac {x^5}{\log (x)} \, dx-520 \int \frac {x^4}{\log (x)} \, dx\\ &=\frac {4}{e^2 x}-4 x^5-x^6-80 \text {Ei}(5 \log (x))-24 \text {Ei}(6 \log (x))-\frac {4 x^5}{\log ^4(x)}-\frac {x^6}{\log ^4(x)}-\frac {16 x^5}{\log ^3(x)}-\frac {4 x^6}{\log ^3(x)}-\frac {22 x^5}{3 \log ^2(x)}+\frac {184 x^5}{\log (x)}+\frac {68 x^6}{\log (x)}+12 \int \frac {x^5}{\log ^3(x)} \, dx+\frac {100}{3} \int \frac {x^4}{\log ^3(x)} \, dx+36 \int \frac {x^5}{\log ^2(x)} \, dx+\frac {350}{3} \int \frac {x^4}{\log ^2(x)} \, dx-192 \operatorname {Subst}\left (\int \frac {e^{6 x}}{x} \, dx,x,\log (x)\right )-216 \int \frac {x^5}{\log (x)} \, dx-400 \int \frac {x^4}{\log (x)} \, dx-520 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {4}{e^2 x}-4 x^5-x^6-600 \text {Ei}(5 \log (x))-216 \text {Ei}(6 \log (x))-\frac {4 x^5}{\log ^4(x)}-\frac {x^6}{\log ^4(x)}-\frac {16 x^5}{\log ^3(x)}-\frac {4 x^6}{\log ^3(x)}-\frac {24 x^5}{\log ^2(x)}-\frac {6 x^6}{\log ^2(x)}+\frac {202 x^5}{3 \log (x)}+\frac {32 x^6}{\log (x)}+36 \int \frac {x^5}{\log ^2(x)} \, dx+\frac {250}{3} \int \frac {x^4}{\log ^2(x)} \, dx+216 \int \frac {x^5}{\log (x)} \, dx-216 \operatorname {Subst}\left (\int \frac {e^{6 x}}{x} \, dx,x,\log (x)\right )-400 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )+\frac {1750}{3} \int \frac {x^4}{\log (x)} \, dx\\ &=\frac {4}{e^2 x}-4 x^5-x^6-1000 \text {Ei}(5 \log (x))-432 \text {Ei}(6 \log (x))-\frac {4 x^5}{\log ^4(x)}-\frac {x^6}{\log ^4(x)}-\frac {16 x^5}{\log ^3(x)}-\frac {4 x^6}{\log ^3(x)}-\frac {24 x^5}{\log ^2(x)}-\frac {6 x^6}{\log ^2(x)}-\frac {16 x^5}{\log (x)}-\frac {4 x^6}{\log (x)}+216 \int \frac {x^5}{\log (x)} \, dx+216 \operatorname {Subst}\left (\int \frac {e^{6 x}}{x} \, dx,x,\log (x)\right )+\frac {1250}{3} \int \frac {x^4}{\log (x)} \, dx+\frac {1750}{3} \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {4}{e^2 x}-4 x^5-x^6-\frac {1250}{3} \text {Ei}(5 \log (x))-216 \text {Ei}(6 \log (x))-\frac {4 x^5}{\log ^4(x)}-\frac {x^6}{\log ^4(x)}-\frac {16 x^5}{\log ^3(x)}-\frac {4 x^6}{\log ^3(x)}-\frac {24 x^5}{\log ^2(x)}-\frac {6 x^6}{\log ^2(x)}-\frac {16 x^5}{\log (x)}-\frac {4 x^6}{\log (x)}+216 \operatorname {Subst}\left (\int \frac {e^{6 x}}{x} \, dx,x,\log (x)\right )+\frac {1250}{3} \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {4}{e^2 x}-4 x^5-x^6-\frac {4 x^5}{\log ^4(x)}-\frac {x^6}{\log ^4(x)}-\frac {16 x^5}{\log ^3(x)}-\frac {4 x^6}{\log ^3(x)}-\frac {24 x^5}{\log ^2(x)}-\frac {6 x^6}{\log ^2(x)}-\frac {16 x^5}{\log (x)}-\frac {4 x^6}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.28, size = 65, normalized size = 2.50 \begin {gather*} \frac {4}{e^2 x}-x^5 (4+x)-\frac {x^5 (4+x)}{\log ^4(x)}-\frac {4 x^5 (4+x)}{\log ^3(x)}-\frac {6 x^5 (4+x)}{\log ^2(x)}-\frac {4 x^5 (4+x)}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 92, normalized size = 3.54 \begin {gather*} -\frac {{\left (4 \, {\left (x^{7} + 4 \, x^{6}\right )} e^{2} \log \relax (x)^{3} + {\left ({\left (x^{7} + 4 \, x^{6}\right )} e^{2} - 4\right )} \log \relax (x)^{4} + 6 \, {\left (x^{7} + 4 \, x^{6}\right )} e^{2} \log \relax (x)^{2} + 4 \, {\left (x^{7} + 4 \, x^{6}\right )} e^{2} \log \relax (x) + {\left (x^{7} + 4 \, x^{6}\right )} e^{2}\right )} e^{\left (-2\right )}}{x \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 114, normalized size = 4.38 \begin {gather*} -\frac {{\left (x^{7} e^{2} \log \relax (x)^{4} + 4 \, x^{7} e^{2} \log \relax (x)^{3} + 4 \, x^{6} e^{2} \log \relax (x)^{4} + 6 \, x^{7} e^{2} \log \relax (x)^{2} + 16 \, x^{6} e^{2} \log \relax (x)^{3} + 4 \, x^{7} e^{2} \log \relax (x) + 24 \, x^{6} e^{2} \log \relax (x)^{2} + x^{7} e^{2} + 16 \, x^{6} e^{2} \log \relax (x) + 4 \, x^{6} e^{2} - 4 \, \log \relax (x)^{4}\right )} e^{\left (-2\right )}}{x \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 71, normalized size = 2.73
method | result | size |
risch | \(-\frac {{\mathrm e}^{-2} \left (x^{7} {\mathrm e}^{2}+4 x^{6} {\mathrm e}^{2}-4\right )}{x}-\frac {x^{5} \left (4 x \ln \relax (x )^{3}+6 x \ln \relax (x )^{2}+16 \ln \relax (x )^{3}+4 x \ln \relax (x )+24 \ln \relax (x )^{2}+x +16 \ln \relax (x )+4\right )}{\ln \relax (x )^{4}}\) | \(71\) |
default | \({\mathrm e}^{-2} \left (-x^{6} {\mathrm e}^{2}-4 \,{\mathrm e}^{2} x^{5}+24 \,{\mathrm e}^{2} \expIntegralEi \left (1, -6 \ln \relax (x )\right )+80 \,{\mathrm e}^{2} \expIntegralEi \left (1, -5 \ln \relax (x )\right )-32 \,{\mathrm e}^{2} \left (-\frac {x^{6}}{\ln \relax (x )}-6 \expIntegralEi \left (1, -6 \ln \relax (x )\right )\right )-104 \,{\mathrm e}^{2} \left (-\frac {x^{5}}{\ln \relax (x )}-5 \expIntegralEi \left (1, -5 \ln \relax (x )\right )\right )-12 \,{\mathrm e}^{2} \left (-\frac {x^{6}}{2 \ln \relax (x )^{2}}-\frac {3 x^{6}}{\ln \relax (x )}-18 \expIntegralEi \left (1, -6 \ln \relax (x )\right )\right )-32 \,{\mathrm e}^{2} \left (-\frac {x^{5}}{2 \ln \relax (x )^{2}}-\frac {5 x^{5}}{2 \ln \relax (x )}-\frac {25 \expIntegralEi \left (1, -5 \ln \relax (x )\right )}{2}\right )+6 \,{\mathrm e}^{2} \left (-\frac {x^{6}}{3 \ln \relax (x )^{3}}-\frac {x^{6}}{\ln \relax (x )^{2}}-\frac {6 x^{6}}{\ln \relax (x )}-36 \expIntegralEi \left (1, -6 \ln \relax (x )\right )\right )+28 \,{\mathrm e}^{2} \left (-\frac {x^{5}}{3 \ln \relax (x )^{3}}-\frac {5 x^{5}}{6 \ln \relax (x )^{2}}-\frac {25 x^{5}}{6 \ln \relax (x )}-\frac {125 \expIntegralEi \left (1, -5 \ln \relax (x )\right )}{6}\right )+4 \,{\mathrm e}^{2} \left (-\frac {x^{6}}{4 \ln \relax (x )^{4}}-\frac {x^{6}}{2 \ln \relax (x )^{3}}-\frac {3 x^{6}}{2 \ln \relax (x )^{2}}-\frac {9 x^{6}}{\ln \relax (x )}-54 \expIntegralEi \left (1, -6 \ln \relax (x )\right )\right )+16 \,{\mathrm e}^{2} \left (-\frac {x^{5}}{4 \ln \relax (x )^{4}}-\frac {5 x^{5}}{12 \ln \relax (x )^{3}}-\frac {25 x^{5}}{24 \ln \relax (x )^{2}}-\frac {125 x^{5}}{24 \ln \relax (x )}-\frac {625 \expIntegralEi \left (1, -5 \ln \relax (x )\right )}{24}\right )+\frac {4}{x}\right )\) | \(330\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.77, size = 121, normalized size = 4.65 \begin {gather*} -{\left (x^{6} e^{2} + 4 \, x^{5} e^{2} + 24 \, {\rm Ei}\left (6 \, \log \relax (x)\right ) e^{2} + 80 \, {\rm Ei}\left (5 \, \log \relax (x)\right ) e^{2} + 520 \, e^{2} \Gamma \left (-1, -5 \, \log \relax (x)\right ) + 192 \, e^{2} \Gamma \left (-1, -6 \, \log \relax (x)\right ) - 800 \, e^{2} \Gamma \left (-2, -5 \, \log \relax (x)\right ) - 432 \, e^{2} \Gamma \left (-2, -6 \, \log \relax (x)\right ) - 3500 \, e^{2} \Gamma \left (-3, -5 \, \log \relax (x)\right ) - 1296 \, e^{2} \Gamma \left (-3, -6 \, \log \relax (x)\right ) + 10000 \, e^{2} \Gamma \left (-4, -5 \, \log \relax (x)\right ) + 5184 \, e^{2} \Gamma \left (-4, -6 \, \log \relax (x)\right ) - \frac {4}{x}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.75, size = 84, normalized size = 3.23 \begin {gather*} -\frac {x^8+4\,x^7-4\,{\mathrm {e}}^{-2}\,x}{x^2}-\frac {\ln \relax (x)\,\left (4\,x^8+16\,x^7\right )+{\ln \relax (x)}^3\,\left (4\,x^8+16\,x^7\right )+{\ln \relax (x)}^2\,\left (6\,x^8+24\,x^7\right )+4\,x^7+x^8}{x^2\,{\ln \relax (x)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 83, normalized size = 3.19 \begin {gather*} \frac {- x^{6} e^{2} - 4 x^{5} e^{2} + \frac {4}{x}}{e^{2}} + \frac {- x^{6} - 4 x^{5} + \left (- 6 x^{6} - 24 x^{5}\right ) \log {\relax (x )}^{2} + \left (- 4 x^{6} - 16 x^{5}\right ) \log {\relax (x )}^{3} + \left (- 4 x^{6} - 16 x^{5}\right ) \log {\relax (x )}}{\log {\relax (x )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________