Optimal. Leaf size=25 \[ 3 \log \left (x+\left (-4+e^{x^2 \log ^2(2)}\right ) \left (-e^x+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9-12 e^x+e^{x^2 \log ^2(2)} \left (-3-6 x^2 \log ^2(2)+e^x \left (3+6 x \log ^2(2)\right )\right )}{-4 e^x+e^{x^2 \log ^2(2)} \left (e^x-x\right )+3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3 \left (-1+e^x+2 e^x x \log ^2(2)-2 x^2 \log ^2(2)\right )}{e^x-x}+\frac {3 \left (-e^x+e^x x+8 e^{2 x} x \log ^2(2)-14 e^x x^2 \log ^2(2)+6 x^3 \log ^2(2)\right )}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )}\right ) \, dx\\ &=3 \int \frac {-1+e^x+2 e^x x \log ^2(2)-2 x^2 \log ^2(2)}{e^x-x} \, dx+3 \int \frac {-e^x+e^x x+8 e^{2 x} x \log ^2(2)-14 e^x x^2 \log ^2(2)+6 x^3 \log ^2(2)}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx\\ &=3 \int \left (1+\frac {-1+x}{e^x-x}+2 x \log ^2(2)\right ) \, dx+3 \int \left (-\frac {e^x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )}+\frac {e^x x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )}+\frac {8 e^{2 x} x \log ^2(2)}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )}-\frac {14 e^x x^2 \log ^2(2)}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )}+\frac {6 x^3 \log ^2(2)}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )}\right ) \, dx\\ &=3 x+3 x^2 \log ^2(2)+3 \int \frac {-1+x}{e^x-x} \, dx-3 \int \frac {e^x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+3 \int \frac {e^x x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+\left (18 \log ^2(2)\right ) \int \frac {x^3}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+\left (24 \log ^2(2)\right ) \int \frac {e^{2 x} x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx-\left (42 \log ^2(2)\right ) \int \frac {e^x x^2}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx\\ &=3 x+3 x^2 \log ^2(2)-3 \int \frac {e^x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+3 \int \frac {e^x x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+3 \int \left (-\frac {1}{e^x-x}+\frac {x}{e^x-x}\right ) \, dx+\left (18 \log ^2(2)\right ) \int \frac {x^3}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+\left (24 \log ^2(2)\right ) \int \frac {e^{2 x} x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx-\left (42 \log ^2(2)\right ) \int \frac {e^x x^2}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx\\ &=3 x+3 x^2 \log ^2(2)-3 \int \frac {1}{e^x-x} \, dx+3 \int \frac {x}{e^x-x} \, dx-3 \int \frac {e^x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+3 \int \frac {e^x x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+\left (18 \log ^2(2)\right ) \int \frac {x^3}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx+\left (24 \log ^2(2)\right ) \int \frac {e^{2 x} x}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx-\left (42 \log ^2(2)\right ) \int \frac {e^x x^2}{\left (e^x-x\right ) \left (-4 e^x+e^{x+x^2 \log ^2(2)}+3 x-e^{x^2 \log ^2(2)} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.97, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {9-12 e^x+e^{x^2 \log ^2(2)} \left (-3-6 x^2 \log ^2(2)+e^x \left (3+6 x \log ^2(2)\right )\right )}{-4 e^x+e^{x^2 \log ^2(2)} \left (e^x-x\right )+3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 46, normalized size = 1.84 \begin {gather*} 3 \, \log \left (-x + e^{x}\right ) + 3 \, \log \left (\frac {{\left (x - e^{x}\right )} e^{\left (x^{2} \log \relax (2)^{2}\right )} - 3 \, x + 4 \, e^{x}}{x - e^{x}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 35, normalized size = 1.40 \begin {gather*} 3 \, \log \left (x e^{\left (x^{2} \log \relax (2)^{2}\right )} - 3 \, x - e^{\left (x^{2} \log \relax (2)^{2} + x\right )} + 4 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 36, normalized size = 1.44
method | result | size |
norman | \(3 \ln \left ({\mathrm e}^{x^{2} \ln \relax (2)^{2}} x -{\mathrm e}^{x^{2} \ln \relax (2)^{2}} {\mathrm e}^{x}-3 x +4 \,{\mathrm e}^{x}\right )\) | \(36\) |
risch | \(3 \ln \left ({\mathrm e}^{x}-x \right )+3 \ln \left ({\mathrm e}^{x^{2} \ln \relax (2)^{2}}-\frac {3 x -4 \,{\mathrm e}^{x}}{x -{\mathrm e}^{x}}\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 46, normalized size = 1.84 \begin {gather*} 3 \, \log \left (-x + e^{x}\right ) + 3 \, \log \left (\frac {{\left (x - e^{x}\right )} e^{\left (x^{2} \log \relax (2)^{2}\right )} - 3 \, x + 4 \, e^{x}}{x - e^{x}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.58, size = 34, normalized size = 1.36 \begin {gather*} 3\,\ln \left (3\,x+{\mathrm {e}}^{{\ln \relax (2)}^2\,x^2+x}-4\,{\mathrm {e}}^x-x\,{\mathrm {e}}^{x^2\,{\ln \relax (2)}^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.58, size = 34, normalized size = 1.36 \begin {gather*} 3 \log {\left (- x + e^{x} \right )} + 3 \log {\left (\frac {- 3 x + 4 e^{x}}{x - e^{x}} + e^{x^{2} \log {\relax (2 )}^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________