Optimal. Leaf size=23 \[ e^{5+\frac {x}{\frac {1}{e}+\frac {1}{3} \left (\frac {5}{2}-x\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 22, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 4, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {12, 6688, 2230, 2209} \begin {gather*} e^{\frac {3 (6+5 e)}{-2 e x+5 e+6}+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rule 2230
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(6 e (6+5 e)) \int \frac {\exp \left (\frac {-30+e (-25+4 x)}{-6+e (-5+2 x)}\right )}{36+e (60-24 x)+e^2 \left (25-20 x+4 x^2\right )} \, dx\\ &=(6 e (6+5 e)) \int \frac {e^{\frac {30+25 e-4 e x}{6+5 e-2 e x}}}{(6+5 e-2 e x)^2} \, dx\\ &=(6 e (6+5 e)) \int \frac {\exp \left (2+\frac {-4 e (6+5 e)+2 e (30+25 e)}{2 e (6+5 e-2 e x)}\right )}{(6+5 e-2 e x)^2} \, dx\\ &=e^{2+\frac {3 (6+5 e)}{6+5 e-2 e x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 23, normalized size = 1.00 \begin {gather*} e^{\frac {30+25 e-4 e x}{6+5 e-2 e x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 24, normalized size = 1.04 \begin {gather*} e^{\left (\frac {{\left (4 \, x - 25\right )} e - 30}{{\left (2 \, x - 5\right )} e - 6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.50, size = 46, normalized size = 2.00 \begin {gather*} \frac {{\left (5 \, e^{2} + 6 \, e\right )} e^{\left (\frac {4 \, x e - 25 \, e - 30}{2 \, x e - 5 \, e - 6} - 1\right )}}{5 \, e + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 27, normalized size = 1.17
method | result | size |
gosper | \({\mathrm e}^{\frac {4 x \,{\mathrm e}-25 \,{\mathrm e}-30}{2 x \,{\mathrm e}-5 \,{\mathrm e}-6}}\) | \(27\) |
derivativedivides | \(-\frac {\left (5 \,{\mathrm e}^{2}+6 \,{\mathrm e}\right ) {\mathrm e}^{-1} \left (-15 \,{\mathrm e}-18\right ) {\mathrm e}^{2+\frac {-15 \,{\mathrm e}-18}{2 x \,{\mathrm e}-5 \,{\mathrm e}-6}}}{3 \left (25 \,{\mathrm e}^{2}+60 \,{\mathrm e}+36\right )}\) | \(61\) |
default | \(-\frac {\left (30 \,{\mathrm e}^{2}+36 \,{\mathrm e}\right ) {\mathrm e}^{-1} \left (-15 \,{\mathrm e}-18\right ) {\mathrm e}^{2+\frac {-15 \,{\mathrm e}-18}{2 x \,{\mathrm e}-5 \,{\mathrm e}-6}}}{18 \left (25 \,{\mathrm e}^{2}+60 \,{\mathrm e}+36\right )}\) | \(61\) |
norman | \(\frac {\left (-5 \,{\mathrm e}-6\right ) {\mathrm e}^{\frac {\left (4 x -25\right ) {\mathrm e}-30}{\left (2 x -5\right ) {\mathrm e}-6}}+2 x \,{\mathrm e} \,{\mathrm e}^{\frac {\left (4 x -25\right ) {\mathrm e}-30}{\left (2 x -5\right ) {\mathrm e}-6}}}{2 x \,{\mathrm e}-5 \,{\mathrm e}-6}\) | \(76\) |
risch | \(\frac {5 \,{\mathrm e}^{\frac {2 x \,{\mathrm e}-20 \,{\mathrm e}-24}{2 x \,{\mathrm e}-5 \,{\mathrm e}-6}} {\mathrm e}^{2}}{5 \,{\mathrm e}+6}+\frac {6 \,{\mathrm e}^{\frac {2 x \,{\mathrm e}-20 \,{\mathrm e}-24}{2 x \,{\mathrm e}-5 \,{\mathrm e}-6}} {\mathrm e}}{5 \,{\mathrm e}+6}\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 53, normalized size = 2.30 \begin {gather*} \frac {{\left (5 \, e^{2} + 6 \, e\right )} e^{\left (-\frac {15 \, e}{2 \, x e - 5 \, e - 6} - \frac {18}{2 \, x e - 5 \, e - 6} + 1\right )}}{5 \, e + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.77, size = 54, normalized size = 2.35 \begin {gather*} {\mathrm {e}}^{-\frac {4\,x\,\mathrm {e}}{5\,\mathrm {e}-2\,x\,\mathrm {e}+6}}\,{\mathrm {e}}^{\frac {30}{5\,\mathrm {e}-2\,x\,\mathrm {e}+6}}\,{\mathrm {e}}^{\frac {25\,\mathrm {e}}{5\,\mathrm {e}-2\,x\,\mathrm {e}+6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 20, normalized size = 0.87 \begin {gather*} e^{\frac {e \left (4 x - 25\right ) - 30}{e \left (2 x - 5\right ) - 6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________