Optimal. Leaf size=30 \[ 5+e^{-2 x \left (-e^{\left (3+e^{\frac {x^4}{81}} x\right )^2}+x\right )} x \]
________________________________________________________________________________________
Rubi [B] time = 1.58, antiderivative size = 248, normalized size of antiderivative = 8.27, number of steps used = 2, number of rules used = 2, integrand size = 127, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {12, 2288} \begin {gather*} -\frac {\left (162 x^2-e^{6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2+9} \left (2 e^{\frac {2 x^4}{81}} \left (4 x^7+81 x^3\right )+6 e^{\frac {x^4}{81}} \left (4 x^6+81 x^2\right )+81 x\right )\right ) \exp \left (2 e^{6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2+9} x-2 x^2\right )}{81 e^{6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2+9}+2 e^{6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2+9} \left (12 e^{\frac {x^4}{81}} x^4+81 e^{\frac {2 x^4}{81}} x+243 e^{\frac {x^4}{81}}+4 e^{\frac {2 x^4}{81}} x^5\right ) x-162 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{81} \int \exp \left (2 e^{9+6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2} x-2 x^2\right ) \left (81-324 x^2+e^{9+6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2} \left (162 x+e^{\frac {x^4}{81}} \left (972 x^2+48 x^6\right )+e^{\frac {2 x^4}{81}} \left (324 x^3+16 x^7\right )\right )\right ) \, dx\\ &=-\frac {\exp \left (2 e^{9+6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2} x-2 x^2\right ) \left (162 x^2-e^{9+6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2} \left (81 x+6 e^{\frac {x^4}{81}} \left (81 x^2+4 x^6\right )+2 e^{\frac {2 x^4}{81}} \left (81 x^3+4 x^7\right )\right )\right )}{81 e^{9+6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2}-162 x+2 e^{9+6 e^{\frac {x^4}{81}} x+e^{\frac {2 x^4}{81}} x^2} x \left (243 e^{\frac {x^4}{81}}+81 e^{\frac {2 x^4}{81}} x+12 e^{\frac {x^4}{81}} x^4+4 e^{\frac {2 x^4}{81}} x^5\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 28, normalized size = 0.93 \begin {gather*} e^{2 \left (e^{\left (3+e^{\frac {x^4}{81}} x\right )^2}-x\right ) x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 34, normalized size = 1.13 \begin {gather*} x e^{\left (-2 \, x^{2} + 2 \, x e^{\left (x^{2} e^{\left (\frac {2}{81} \, x^{4}\right )} + 6 \, x e^{\left (\frac {1}{81} \, x^{4}\right )} + 9\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{81} \, {\left (324 \, x^{2} - 2 \, {\left (2 \, {\left (4 \, x^{7} + 81 \, x^{3}\right )} e^{\left (\frac {2}{81} \, x^{4}\right )} + 6 \, {\left (4 \, x^{6} + 81 \, x^{2}\right )} e^{\left (\frac {1}{81} \, x^{4}\right )} + 81 \, x\right )} e^{\left (x^{2} e^{\left (\frac {2}{81} \, x^{4}\right )} + 6 \, x e^{\left (\frac {1}{81} \, x^{4}\right )} + 9\right )} - 81\right )} e^{\left (-2 \, x^{2} + 2 \, x e^{\left (x^{2} e^{\left (\frac {2}{81} \, x^{4}\right )} + 6 \, x e^{\left (\frac {1}{81} \, x^{4}\right )} + 9\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 33, normalized size = 1.10
method | result | size |
risch | \(x \,{\mathrm e}^{-2 x \left (-{\mathrm e}^{x^{2} {\mathrm e}^{\frac {2 x^{4}}{81}}+6 x \,{\mathrm e}^{\frac {x^{4}}{81}}+9}+x \right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 34, normalized size = 1.13 \begin {gather*} x e^{\left (-2 \, x^{2} + 2 \, x e^{\left (x^{2} e^{\left (\frac {2}{81} \, x^{4}\right )} + 6 \, x e^{\left (\frac {1}{81} \, x^{4}\right )} + 9\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 35, normalized size = 1.17 \begin {gather*} x\,{\mathrm {e}}^{-2\,x^2}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{\frac {2\,x^4}{81}}}\,{\mathrm {e}}^9\,{\mathrm {e}}^{6\,x\,{\mathrm {e}}^{\frac {x^4}{81}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.11, size = 36, normalized size = 1.20 \begin {gather*} x e^{- 2 x^{2} + 2 x e^{x^{2} e^{\frac {2 x^{4}}{81}} + 6 x e^{\frac {x^{4}}{81}} + 9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________