Optimal. Leaf size=29 \[ \frac {3}{-x+\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 76.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12 x-6 e^x x+3 x^2+\left (e^x (24-6 x)-6 x\right ) \log (x)+(24-6 x) \log ^2(x)+\left (12-3 x+e^x \left (12 x-3 x^2\right )\right ) \log \left (e^{\log ^2(x)} \left (48-24 x+3 x^2\right )\right )}{-4 x^3+x^4+\left (e^x \left (8 x^2-2 x^3\right )+\left (8 x^2-2 x^3\right ) \log (x)\right ) \log \left (e^{\log ^2(x)} \left (48-24 x+3 x^2\right )\right )+\left (e^{2 x} \left (-4 x+x^2\right )+e^x \left (-8 x+2 x^2\right ) \log (x)+\left (-4 x+x^2\right ) \log ^2(x)\right ) \log ^2\left (e^{\log ^2(x)} \left (48-24 x+3 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-x \left (-4-2 e^x+x\right )+(-4+x) \left (1+e^x x\right ) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+2 \left (e^x (-4+x)+x\right ) \log (x)+2 (-4+x) \log ^2(x)\right )}{(4-x) x \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )^2} \, dx\\ &=3 \int \frac {-x \left (-4-2 e^x+x\right )+(-4+x) \left (1+e^x x\right ) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+2 \left (e^x (-4+x)+x\right ) \log (x)+2 (-4+x) \log ^2(x)}{(4-x) x \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )^2} \, dx\\ &=3 \int \left (\frac {2 x-4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 \log (x)+2 x \log (x)}{(-4+x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )}-\frac {2 x^2+4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-5 x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^3 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-4 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )+x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 x \log (x)+2 x^2 \log (x)+4 x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)-x^2 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)}{(-4+x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )^2}\right ) \, dx\\ &=3 \int \frac {2 x-4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 \log (x)+2 x \log (x)}{(-4+x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )} \, dx-3 \int \frac {2 x^2+4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-5 x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^3 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-4 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )+x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 x \log (x)+2 x^2 \log (x)+4 x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)-x^2 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)}{(-4+x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )^2} \, dx\\ &=3 \int \frac {-\left ((-4+x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )\right )-2 (x+(-4+x) \log (x))}{(4-x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )} \, dx-3 \int \frac {-x \left (4-5 x+x^2\right ) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-2 x (x+(-4+x) \log (x))+(-4+x) \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) (-1+x \log (x))}{(4-x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )^2} \, dx\\ &=3 \int \left (\frac {2 x-4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 \log (x)+2 x \log (x)}{4 (-4+x) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )}-\frac {2 x-4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 \log (x)+2 x \log (x)}{4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )}\right ) \, dx-3 \int \left (\frac {2 x^2+4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-5 x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^3 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-4 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )+x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 x \log (x)+2 x^2 \log (x)+4 x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)-x^2 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)}{4 (-4+x) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )^2}-\frac {2 x^2+4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-5 x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^3 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-4 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )+x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 x \log (x)+2 x^2 \log (x)+4 x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)-x^2 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)}{4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )^2}\right ) \, dx\\ &=\frac {3}{4} \int \frac {2 x-4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 \log (x)+2 x \log (x)}{(-4+x) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )} \, dx-\frac {3}{4} \int \frac {2 x-4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 \log (x)+2 x \log (x)}{x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )} \, dx-\frac {3}{4} \int \frac {2 x^2+4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-5 x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^3 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-4 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )+x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 x \log (x)+2 x^2 \log (x)+4 x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)-x^2 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)}{(-4+x) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )^2} \, dx+\frac {3}{4} \int \frac {2 x^2+4 x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-5 x^2 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+x^3 \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-4 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )+x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right )-8 x \log (x)+2 x^2 \log (x)+4 x \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)-x^2 \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)}{x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-e^x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \log (x)\right )^2} \, dx\\ &=\frac {3}{4} \int \frac {-\left ((-4+x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )\right )-2 (x+(-4+x) \log (x))}{(4-x) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )} \, dx-\frac {3}{4} \int \frac {(-4+x) x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+2 (x+(-4+x) \log (x))}{x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )} \, dx+\frac {3}{4} \int \frac {x \left (4-5 x+x^2\right ) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )+2 x (x+(-4+x) \log (x))-(-4+x) \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) (-1+x \log (x))}{x \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )^2} \, dx-\frac {3}{4} \int \frac {-x \left (4-5 x+x^2\right ) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right )-2 x (x+(-4+x) \log (x))+(-4+x) \log ^2\left (3 e^{\log ^2(x)} (-4+x)^2\right ) (-1+x \log (x))}{(4-x) \log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.71, size = 28, normalized size = 0.97 \begin {gather*} -\frac {3}{x-\log \left (3 e^{\log ^2(x)} (-4+x)^2\right ) \left (e^x+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 30, normalized size = 1.03 \begin {gather*} \frac {3}{{\left (e^{x} + \log \relax (x)\right )} \log \left (3 \, {\left (x^{2} - 8 \, x + 16\right )} e^{\left (\log \relax (x)^{2}\right )}\right ) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.78, size = 47, normalized size = 1.62 \begin {gather*} \frac {3}{e^{x} \log \relax (x)^{2} + \log \relax (x)^{3} + e^{x} \log \left (3 \, x^{2} - 24 \, x + 48\right ) + \log \left (3 \, x^{2} - 24 \, x + 48\right ) \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 4.11, size = 417, normalized size = 14.38
method | result | size |
risch | \(\frac {6 i}{\pi \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right )^{3} \ln \relax (x )+\pi \mathrm {csgn}\left (i \left (x -4\right )\right )^{2} \mathrm {csgn}\left (i \left (x -4\right )^{2}\right ) {\mathrm e}^{x}+\pi \mathrm {csgn}\left (i \left (x -4\right )\right )^{2} \mathrm {csgn}\left (i \left (x -4\right )^{2}\right ) \ln \relax (x )-2 \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (i \left (x -4\right )^{2}\right )^{2} {\mathrm e}^{x}-2 \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (i \left (x -4\right )^{2}\right )^{2} \ln \relax (x )-\pi \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}}\right ) {\mathrm e}^{x}-\pi \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}}\right ) \ln \relax (x )-\pi \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (x -4\right )^{2}\right ) {\mathrm e}^{x}-\pi \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (x -4\right )^{2}\right ) \ln \relax (x )+\pi \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right )^{3} {\mathrm e}^{x}+2 i {\mathrm e}^{x} \ln \left ({\mathrm e}^{\ln \relax (x )^{2}}\right )+2 i \ln \relax (x ) \ln \left ({\mathrm e}^{\ln \relax (x )^{2}}\right )+2 i \ln \relax (3) \ln \relax (x )+4 i \ln \relax (x ) \ln \left (x -4\right )+4 i {\mathrm e}^{x} \ln \left (x -4\right )+2 i \ln \relax (3) {\mathrm e}^{x}-2 i x +\pi \,\mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}}\right ) \mathrm {csgn}\left (i \left (x -4\right )^{2}\right ) {\mathrm e}^{x}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}} \left (x -4\right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\ln \relax (x )^{2}}\right ) \mathrm {csgn}\left (i \left (x -4\right )^{2}\right ) \ln \relax (x )+\pi \mathrm {csgn}\left (i \left (x -4\right )^{2}\right )^{3} \ln \relax (x )+\pi \mathrm {csgn}\left (i \left (x -4\right )^{2}\right )^{3} {\mathrm e}^{x}}\) | \(417\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {3 \, {\left (x - 4\right )}}{e^{x} \log \relax (3) + 2 \, {\left (e^{x} + \log \relax (x)\right )} \log \left (x - 4\right ) + \log \relax (3) \log \relax (x) + {\left (e^{x} + \log \relax (x)\right )} \log \left (e^{\left (\log \relax (x)^{2}\right )}\right ) - x} - 3 \, \int \frac {1}{e^{x} \log \relax (3) + 2 \, {\left (e^{x} + \log \relax (x)\right )} \log \left (x - 4\right ) + \log \relax (3) \log \relax (x) + {\left (e^{x} + \log \relax (x)\right )} \log \left (e^{\left (\log \relax (x)^{2}\right )}\right ) - x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.21, size = 30, normalized size = 1.03 \begin {gather*} -\frac {3}{x-\ln \left ({\mathrm {e}}^{{\ln \relax (x)}^2}\,\left (3\,x^2-24\,x+48\right )\right )\,\left ({\mathrm {e}}^x+\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.88, size = 27, normalized size = 0.93 \begin {gather*} \frac {3}{- x + \left (e^{x} + \log {\relax (x )}\right ) \log {\left (\left (3 x^{2} - 24 x + 48\right ) e^{\log {\relax (x )}^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________