Optimal. Leaf size=26 \[ -2+x+x^2 \left (-2+e^x-e^{e^{3-\frac {5}{x}}} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 48, normalized size of antiderivative = 1.85, number of steps used = 10, number of rules used = 5, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2288, 1593, 2196, 2176, 2194} \begin {gather*} e^x x^2-2 x^2-\frac {5 e^{e^{-\frac {5-3 x}{x}}} x}{\frac {5-3 x}{x^2}+\frac {3}{x}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x-2 x^2+\int e^{e^{\frac {-5+3 x}{x}}} \left (-5 e^{\frac {-5+3 x}{x}} x-3 x^2\right ) \, dx+\int e^x \left (2 x+x^2\right ) \, dx\\ &=x-\frac {5 e^{e^{-\frac {5-3 x}{x}}} x}{\frac {5-3 x}{x^2}+\frac {3}{x}}-2 x^2+\int e^x x (2+x) \, dx\\ &=x-\frac {5 e^{e^{-\frac {5-3 x}{x}}} x}{\frac {5-3 x}{x^2}+\frac {3}{x}}-2 x^2+\int \left (2 e^x x+e^x x^2\right ) \, dx\\ &=x-\frac {5 e^{e^{-\frac {5-3 x}{x}}} x}{\frac {5-3 x}{x^2}+\frac {3}{x}}-2 x^2+2 \int e^x x \, dx+\int e^x x^2 \, dx\\ &=x+2 e^x x-\frac {5 e^{e^{-\frac {5-3 x}{x}}} x}{\frac {5-3 x}{x^2}+\frac {3}{x}}-2 x^2+e^x x^2-2 \int e^x \, dx-2 \int e^x x \, dx\\ &=-2 e^x+x-\frac {5 e^{e^{-\frac {5-3 x}{x}}} x}{\frac {5-3 x}{x^2}+\frac {3}{x}}-2 x^2+e^x x^2+2 \int e^x \, dx\\ &=x-\frac {5 e^{e^{-\frac {5-3 x}{x}}} x}{\frac {5-3 x}{x^2}+\frac {3}{x}}-2 x^2+e^x x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 27, normalized size = 1.04 \begin {gather*} x+\left (-2+e^x\right ) x^2-e^{e^{3-\frac {5}{x}}} x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.30, size = 29, normalized size = 1.12 \begin {gather*} -x^{3} e^{\left (e^{\left (\frac {3 \, x - 5}{x}\right )}\right )} + x^{2} e^{x} - 2 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 51, normalized size = 1.96 \begin {gather*} -x^{3} e^{\left (\frac {x e^{\left (\frac {3 \, x - 5}{x}\right )} + 3 \, x - 5}{x} - \frac {3 \, x - 5}{x}\right )} + x^{2} e^{x} - 2 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 30, normalized size = 1.15
method | result | size |
default | \(x -x^{3} {\mathrm e}^{{\mathrm e}^{\frac {3 x -5}{x}}}+{\mathrm e}^{x} x^{2}-2 x^{2}\) | \(30\) |
norman | \(x -x^{3} {\mathrm e}^{{\mathrm e}^{\frac {3 x -5}{x}}}+{\mathrm e}^{x} x^{2}-2 x^{2}\) | \(30\) |
risch | \(x -x^{3} {\mathrm e}^{{\mathrm e}^{\frac {3 x -5}{x}}}+{\mathrm e}^{x} x^{2}-2 x^{2}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} e^{x} - 2 \, x^{2} + x - \int {\left (3 \, x^{2} e^{\frac {5}{x}} + 5 \, x e^{3}\right )} e^{\left (-\frac {5}{x} + e^{\left (-\frac {5}{x} + 3\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.96, size = 28, normalized size = 1.08 \begin {gather*} x+x^2\,{\mathrm {e}}^x-2\,x^2-x^3\,{\mathrm {e}}^{{\mathrm {e}}^3\,{\mathrm {e}}^{-\frac {5}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.63, size = 26, normalized size = 1.00 \begin {gather*} - x^{3} e^{e^{\frac {3 x - 5}{x}}} + x^{2} e^{x} - 2 x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________