Optimal. Leaf size=19 \[ 6 x-\log (4) \log \left (\frac {5}{x}-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-30 x+(-5-x) \log (4)+6 x^2 \log (x)}{-5 x+x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-30 x+(-5-x) \log (4)+6 x^2 \log (x)}{x^2 \left (-\frac {5}{x}+\log (x)\right )} \, dx\\ &=\int \frac {-30 x+(-5-x) \log (4)+6 x^2 \log (x)}{x (-5+x \log (x))} \, dx\\ &=\int \left (6-\frac {(5+x) \log (4)}{x (-5+x \log (x))}\right ) \, dx\\ &=6 x-\log (4) \int \frac {5+x}{x (-5+x \log (x))} \, dx\\ &=6 x-\log (4) \int \left (\frac {1}{-5+x \log (x)}+\frac {5}{x (-5+x \log (x))}\right ) \, dx\\ &=6 x-\log (4) \int \frac {1}{-5+x \log (x)} \, dx-(5 \log (4)) \int \frac {1}{x (-5+x \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 21, normalized size = 1.11 \begin {gather*} 6 x+\log (4) \log (x)-\log (4) \log (5-x \log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 19, normalized size = 1.00 \begin {gather*} -2 \, \log \relax (2) \log \left (\frac {x \log \relax (x) - 5}{x}\right ) + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 21, normalized size = 1.11 \begin {gather*} -2 \, \log \relax (2) \log \left (x \log \relax (x) - 5\right ) + 2 \, \log \relax (2) \log \relax (x) + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.95
method | result | size |
risch | \(6 x -2 \ln \relax (2) \ln \left (\ln \relax (x )-\frac {5}{x}\right )\) | \(18\) |
default | \(6 x +2 \ln \relax (2) \ln \relax (x )-2 \ln \relax (2) \ln \left (x \ln \relax (x )-5\right )\) | \(22\) |
norman | \(6 x +2 \ln \relax (2) \ln \relax (x )-2 \ln \relax (2) \ln \left (x \ln \relax (x )-5\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 19, normalized size = 1.00 \begin {gather*} -2 \, \log \relax (2) \log \left (\frac {x \log \relax (x) - 5}{x}\right ) + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.89, size = 21, normalized size = 1.11 \begin {gather*} 6\,x-2\,\ln \relax (2)\,\ln \left (x\,\ln \relax (x)-5\right )+2\,\ln \relax (2)\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.79 \begin {gather*} 6 x - 2 \log {\relax (2 )} \log {\left (\log {\relax (x )} - \frac {5}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________