Optimal. Leaf size=22 \[ \frac {\log ^2\left (\frac {4 \left (-5+\frac {\log (x)}{x}\right )^2}{x^2}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(4+20 x-8 \log (x)) \log \left (\frac {100 x^2-40 x \log (x)+4 \log ^2(x)}{x^4}\right )+(10 x-2 \log (x)) \log ^2\left (\frac {100 x^2-40 x \log (x)+4 \log ^2(x)}{x^4}\right )}{-5 x^4+x^3 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(4+20 x-8 \log (x)) \log \left (\frac {100 x^2-40 x \log (x)+4 \log ^2(x)}{x^4}\right )+(10 x-2 \log (x)) \log ^2\left (\frac {100 x^2-40 x \log (x)+4 \log ^2(x)}{x^4}\right )}{x^3 (-5 x+\log (x))} \, dx\\ &=\int \frac {2 \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right ) \left (-2-10 x+4 \log (x)-5 x \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )+\log (x) \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )\right )}{x^3 (5 x-\log (x))} \, dx\\ &=2 \int \frac {\log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right ) \left (-2-10 x+4 \log (x)-5 x \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )+\log (x) \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )\right )}{x^3 (5 x-\log (x))} \, dx\\ &=2 \int \left (-\frac {2 (1+5 x-2 \log (x)) \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3 (5 x-\log (x))}-\frac {\log ^2\left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {\log ^2\left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3} \, dx\right )-4 \int \frac {(1+5 x-2 \log (x)) \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3 (5 x-\log (x))} \, dx\\ &=-\left (2 \int \frac {\log ^2\left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3} \, dx\right )-4 \int \left (\frac {\log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3 (5 x-\log (x))}+\frac {5 \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^2 (5 x-\log (x))}-\frac {2 \log (x) \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3 (5 x-\log (x))}\right ) \, dx\\ &=-\left (2 \int \frac {\log ^2\left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3} \, dx\right )-4 \int \frac {\log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3 (5 x-\log (x))} \, dx+8 \int \frac {\log (x) \log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^3 (5 x-\log (x))} \, dx-20 \int \frac {\log \left (\frac {4 (-5 x+\log (x))^2}{x^4}\right )}{x^2 (5 x-\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.67, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(4+20 x-8 \log (x)) \log \left (\frac {100 x^2-40 x \log (x)+4 \log ^2(x)}{x^4}\right )+(10 x-2 \log (x)) \log ^2\left (\frac {100 x^2-40 x \log (x)+4 \log ^2(x)}{x^4}\right )}{-5 x^4+x^3 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 27, normalized size = 1.23 \begin {gather*} \frac {\log \left (\frac {4 \, {\left (25 \, x^{2} - 10 \, x \log \relax (x) + \log \relax (x)^{2}\right )}}{x^{4}}\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.14, size = 59, normalized size = 2.68 \begin {gather*} \frac {\log \left (100 \, x^{2} - 40 \, x \log \relax (x) + 4 \, \log \relax (x)^{2}\right )^{2}}{x^{2}} - \frac {8 \, \log \left (100 \, x^{2} - 40 \, x \log \relax (x) + 4 \, \log \relax (x)^{2}\right ) \log \relax (x)}{x^{2}} + \frac {16 \, \log \relax (x)^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.70, size = 7795, normalized size = 354.32
method | result | size |
risch | \(\text {Expression too large to display}\) | \(7795\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 47, normalized size = 2.14 \begin {gather*} \frac {4 \, {\left (\log \relax (2)^{2} - 4 \, \log \relax (2) \log \relax (x) + 4 \, \log \relax (x)^{2} + 2 \, {\left (\log \relax (2) - 2 \, \log \relax (x)\right )} \log \left (-5 \, x + \log \relax (x)\right ) + \log \left (-5 \, x + \log \relax (x)\right )^{2}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.22, size = 27, normalized size = 1.23 \begin {gather*} \frac {{\ln \left (\frac {4\,\left (25\,x^2-10\,x\,\ln \relax (x)+{\ln \relax (x)}^2\right )}{x^4}\right )}^2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 27, normalized size = 1.23 \begin {gather*} \frac {\log {\left (\frac {100 x^{2} - 40 x \log {\relax (x )} + 4 \log {\relax (x )}^{2}}{x^{4}} \right )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________