Optimal. Leaf size=27 \[ -e^{e^{2 x \left (-\frac {x}{1+e}+\log (x)\right )} x \log ^2(\log (2))} \]
________________________________________________________________________________________
Rubi [F] time = 13.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) \left (-1+e (-1-2 x)-2 x+4 x^2+(-2 x-2 e x) \log (x)\right ) \log ^2(\log (2))}{1+e} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\log ^2(\log (2)) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) \left (-1+e (-1-2 x)-2 x+4 x^2+(-2 x-2 e x) \log (x)\right ) \, dx}{1+e}\\ &=\frac {\log ^2(\log (2)) \int \left (-\exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right )-2 \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x+4 \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x^2-\exp \left (1+\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) (1+2 x)-2 \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) (1+e) x \log (x)\right ) \, dx}{1+e}\\ &=-\left (\left (2 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x \log (x) \, dx\right )-\frac {\log ^2(\log (2)) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) \, dx}{1+e}-\frac {\log ^2(\log (2)) \int \exp \left (1+\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) (1+2 x) \, dx}{1+e}-\frac {\left (2 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x \, dx}{1+e}+\frac {\left (4 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x^2 \, dx}{1+e}\\ &=-\left (\left (2 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x \log (x) \, dx\right )-\frac {\log ^2(\log (2)) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) \, dx}{1+e}-\frac {\log ^2(\log (2)) \int \left (\exp \left (1+\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right )+2 \exp \left (1+\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x\right ) \, dx}{1+e}-\frac {\left (2 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x \, dx}{1+e}+\frac {\left (4 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x^2 \, dx}{1+e}\\ &=-\left (\left (2 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x \log (x) \, dx\right )-\frac {\log ^2(\log (2)) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) \, dx}{1+e}-\frac {\log ^2(\log (2)) \int \exp \left (1+\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) \, dx}{1+e}-\frac {\left (2 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x \, dx}{1+e}-\frac {\left (2 \log ^2(\log (2))\right ) \int \exp \left (1+\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x \, dx}{1+e}+\frac {\left (4 \log ^2(\log (2))\right ) \int \exp \left (\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}+e^{\frac {2 \left (-x^2+(x+e x) \log (x)\right )}{1+e}} x \log ^2(\log (2))\right ) x^2 \, dx}{1+e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.16, size = 29, normalized size = 1.07 \begin {gather*} -e^{e^{-\frac {2 x^2}{1+e}} x^{1+2 x} \log ^2(\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 84, normalized size = 3.11 \begin {gather*} -e^{\left (\frac {{\left (x e + x\right )} e^{\left (-\frac {2 \, {\left (x^{2} - {\left (x e + x\right )} \log \relax (x)\right )}}{e + 1}\right )} \log \left (\log \relax (2)\right )^{2} - 2 \, x^{2} + 2 \, {\left (x e + x\right )} \log \relax (x)}{e + 1} + \frac {2 \, {\left (x^{2} - {\left (x e + x\right )} \log \relax (x)\right )}}{e + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, x^{2} - {\left (2 \, x + 1\right )} e - 2 \, {\left (x e + x\right )} \log \relax (x) - 2 \, x - 1\right )} e^{\left (x e^{\left (-\frac {2 \, {\left (x^{2} - {\left (x e + x\right )} \log \relax (x)\right )}}{e + 1}\right )} \log \left (\log \relax (2)\right )^{2} - \frac {2 \, {\left (x^{2} - {\left (x e + x\right )} \log \relax (x)\right )}}{e + 1}\right )} \log \left (\log \relax (2)\right )^{2}}{e + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 32, normalized size = 1.19
method | result | size |
risch | \(-{\mathrm e}^{x \ln \left (\ln \relax (2)\right )^{2} {\mathrm e}^{\frac {2 x \left ({\mathrm e} \ln \relax (x )+\ln \relax (x )-x \right )}{1+{\mathrm e}}}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.02, size = 47, normalized size = 1.74 \begin {gather*} -e^{\left (x e^{\left (\frac {2 \, x e \log \relax (x)}{e + 1} - \frac {2 \, x^{2}}{e + 1} + \frac {2 \, x \log \relax (x)}{e + 1}\right )} \log \left (\log \relax (2)\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.24, size = 46, normalized size = 1.70 \begin {gather*} -{\mathrm {e}}^{x\,x^{\frac {2\,x\,\mathrm {e}}{\mathrm {e}+1}}\,x^{\frac {2\,x}{\mathrm {e}+1}}\,{\mathrm {e}}^{-\frac {2\,x^2}{\mathrm {e}+1}}\,{\ln \left (\ln \relax (2)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.06, size = 34, normalized size = 1.26 \begin {gather*} - e^{x e^{\frac {2 \left (- x^{2} + \left (x + e x\right ) \log {\relax (x )}\right )}{1 + e}} \log {\left (\log {\relax (2 )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________