Optimal. Leaf size=24 \[ 25+e^{8-e^{2 x^2} x^2}+\log ^{x^2}(x) \]
________________________________________________________________________________________
Rubi [F] time = 0.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{8+2 x^2-e^{2 x^2} x^2} \left (-2 x-4 x^3\right ) \log (x)+\log ^{x^2}(x) (x+2 x \log (x) \log (\log (x)))}{\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{8-\left (-2+e^{2 x^2}\right ) x^2} x \left (1+2 x^2\right )+x \log ^{-1+x^2}(x) (1+2 \log (x) \log (\log (x)))\right ) \, dx\\ &=-\left (2 \int e^{8-\left (-2+e^{2 x^2}\right ) x^2} x \left (1+2 x^2\right ) \, dx\right )+\int x \log ^{-1+x^2}(x) (1+2 \log (x) \log (\log (x))) \, dx\\ &=\int \left (x \log ^{-1+x^2}(x)+2 x \log ^{x^2}(x) \log (\log (x))\right ) \, dx-\operatorname {Subst}\left (\int e^{8-\left (-2+e^{2 x}\right ) x} (1+2 x) \, dx,x,x^2\right )\\ &=2 \int x \log ^{x^2}(x) \log (\log (x)) \, dx+\int x \log ^{-1+x^2}(x) \, dx-\operatorname {Subst}\left (\int \left (e^{8-\left (-2+e^{2 x}\right ) x}+2 e^{8-\left (-2+e^{2 x}\right ) x} x\right ) \, dx,x,x^2\right )\\ &=2 \int x \log ^{x^2}(x) \log (\log (x)) \, dx-2 \operatorname {Subst}\left (\int e^{8-\left (-2+e^{2 x}\right ) x} x \, dx,x,x^2\right )+\int x \log ^{-1+x^2}(x) \, dx-\operatorname {Subst}\left (\int e^{8-\left (-2+e^{2 x}\right ) x} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 23, normalized size = 0.96 \begin {gather*} e^{8-e^{2 x^2} x^2}+\log ^{x^2}(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 40, normalized size = 1.67 \begin {gather*} {\left (\log \relax (x)^{\left (x^{2}\right )} e^{\left (2 \, x^{2}\right )} + e^{\left (-x^{2} e^{\left (2 \, x^{2}\right )} + 2 \, x^{2} + 8\right )}\right )} e^{\left (-2 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (2 \, x^{3} + x\right )} e^{\left (-x^{2} e^{\left (2 \, x^{2}\right )} + 2 \, x^{2} + 8\right )} \log \relax (x) - {\left (2 \, x \log \relax (x) \log \left (\log \relax (x)\right ) + x\right )} \log \relax (x)^{\left (x^{2}\right )}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 22, normalized size = 0.92
method | result | size |
risch | \(\ln \relax (x )^{x^{2}}+{\mathrm e}^{-{\mathrm e}^{2 x^{2}} x^{2}+8}\) | \(22\) |
default | \({\mathrm e}^{x^{2} \ln \left (\ln \relax (x )\right )}+{\mathrm e}^{-{\mathrm e}^{2 x^{2}} x^{2}+8}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 35, normalized size = 1.46 \begin {gather*} {\left (e^{8} + e^{\left (x^{2} e^{\left (2 \, x^{2}\right )} + x^{2} \log \left (\log \relax (x)\right )\right )}\right )} e^{\left (-x^{2} e^{\left (2 \, x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.93, size = 22, normalized size = 0.92 \begin {gather*} {\ln \relax (x)}^{x^2}+{\mathrm {e}}^{-x^2\,{\mathrm {e}}^{2\,x^2}}\,{\mathrm {e}}^8 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.55, size = 22, normalized size = 0.92 \begin {gather*} e^{x^{2} \log {\left (\log {\relax (x )} \right )}} + e^{- x^{2} e^{2 x^{2}} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________