Optimal. Leaf size=27 \[ 4+\frac {x}{2-x}-\log (-4-\log (4)+2 (x+\log (\log (x)))) \]
________________________________________________________________________________________
Rubi [F] time = 3.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8+8 x-2 x^2+\left (-16 x+12 x^2-2 x^3-2 x \log (4)\right ) \log (x)+4 x \log (x) \log (\log (x))}{\left (-16 x+24 x^2-12 x^3+2 x^4+\left (-4 x+4 x^2-x^3\right ) \log (4)\right ) \log (x)+\left (8 x-8 x^2+2 x^3\right ) \log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-(-2+x)^2-x \log (x) \left (8-6 x+x^2+\log (4)-2 \log (\log (x))\right )\right )}{(2-x)^2 x \log (x) \left (2 x-4 \left (1+\frac {\log (2)}{2}\right )+2 \log (\log (x))\right )} \, dx\\ &=2 \int \frac {-(-2+x)^2-x \log (x) \left (8-6 x+x^2+\log (4)-2 \log (\log (x))\right )}{(2-x)^2 x \log (x) \left (2 x-4 \left (1+\frac {\log (2)}{2}\right )+2 \log (\log (x))\right )} \, dx\\ &=2 \int \frac {(-2+x)^2+x \log (x) \left (8-6 x+x^2+\log (4)-2 \log (\log (x))\right )}{2 (2-x)^2 x \log (x) \left (2-x-\log \left (\frac {\log (x)}{2}\right )\right )} \, dx\\ &=\int \frac {(-2+x)^2+x \log (x) \left (8-6 x+x^2+\log (4)-2 \log (\log (x))\right )}{(2-x)^2 x \log (x) \left (2-x-\log \left (\frac {\log (x)}{2}\right )\right )} \, dx\\ &=\int \left (\frac {6 x}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}-\frac {x^2}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}-\frac {8 \left (1+\frac {\log (2)}{4}\right )}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}-\frac {1}{x \log (x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}+\frac {2 \log (\log (x))}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}\right ) \, dx\\ &=2 \int \frac {\log (\log (x))}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx+6 \int \frac {x}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-\left (8 \left (1+\frac {\log (2)}{4}\right )\right ) \int \frac {1}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-\int \frac {x^2}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-\int \frac {1}{x \log (x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx\\ &=2 \int \frac {\log (\log (x))}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx+6 \int \left (\frac {2}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}+\frac {1}{(-2+x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}\right ) \, dx-\left (8 \left (1+\frac {\log (2)}{4}\right )\right ) \int \frac {1}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-\int \frac {1}{x \log (x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-\int \left (\frac {1}{-2+x+\log \left (\frac {\log (x)}{2}\right )}+\frac {4}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}+\frac {4}{(-2+x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )}\right ) \, dx\\ &=2 \int \frac {\log (\log (x))}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-4 \int \frac {1}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-4 \int \frac {1}{(-2+x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx+6 \int \frac {1}{(-2+x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx+12 \int \frac {1}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-\left (8 \left (1+\frac {\log (2)}{4}\right )\right ) \int \frac {1}{(-2+x)^2 \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx-\int \frac {1}{-2+x+\log \left (\frac {\log (x)}{2}\right )} \, dx-\int \frac {1}{x \log (x) \left (-2+x+\log \left (\frac {\log (x)}{2}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 25, normalized size = 0.93 \begin {gather*} -2 \left (\frac {1}{-2+x}+\frac {1}{2} \log (4-2 x+\log (4)-2 \log (\log (x)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 24, normalized size = 0.89 \begin {gather*} -\frac {{\left (x - 2\right )} \log \left (x - \log \relax (2) + \log \left (\log \relax (x)\right ) - 2\right ) + 2}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 21, normalized size = 0.78 \begin {gather*} -\frac {2}{x - 2} - \log \left (x - \log \relax (2) + \log \left (\log \relax (x)\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 22, normalized size = 0.81
method | result | size |
risch | \(-\frac {2}{x -2}-\ln \left (-\ln \relax (2)+x +\ln \left (\ln \relax (x )\right )-2\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 21, normalized size = 0.78 \begin {gather*} -\frac {2}{x - 2} - \log \left (x - \log \relax (2) + \log \left (\log \relax (x)\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \relax (x)\,\left (16\,x+4\,x\,\ln \relax (2)-12\,x^2+2\,x^3\right )-8\,x+2\,x^2-4\,x\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)+8}{\ln \relax (x)\,\left (16\,x+2\,\ln \relax (2)\,\left (x^3-4\,x^2+4\,x\right )-24\,x^2+12\,x^3-2\,x^4\right )-\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (2\,x^3-8\,x^2+8\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 19, normalized size = 0.70 \begin {gather*} - \log {\left (x + \log {\left (\log {\relax (x )} \right )} - 2 - \log {\relax (2 )} \right )} - \frac {2}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________