Optimal. Leaf size=18 \[ \frac {2 x}{5 \left (-e^{2 (3+x)}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 20, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6688, 12, 6711, 32} \begin {gather*} \frac {2}{5 \left (1-\frac {e^{2 x+6}}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{6+2 x} (-1+2 x)}{5 \left (e^{6+2 x}-x\right )^2} \, dx\\ &=\frac {2}{5} \int \frac {e^{6+2 x} (-1+2 x)}{\left (e^{6+2 x}-x\right )^2} \, dx\\ &=\frac {2}{5} \operatorname {Subst}\left (\int \frac {1}{(-1+x)^2} \, dx,x,\frac {e^{6+2 x}}{x}\right )\\ &=\frac {2}{5 \left (1-\frac {e^{6+2 x}}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 18, normalized size = 1.00 \begin {gather*} -\frac {2 x}{5 \left (e^{6+2 x}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 15, normalized size = 0.83 \begin {gather*} \frac {2 \, x}{5 \, {\left (x - e^{\left (2 \, x + 6\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 15, normalized size = 0.83 \begin {gather*} \frac {2 \, x}{5 \, {\left (x - e^{\left (2 \, x + 6\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 16, normalized size = 0.89
method | result | size |
risch | \(\frac {2 x}{5 \left (x -{\mathrm e}^{2 x +6}\right )}\) | \(16\) |
norman | \(\frac {2 \,{\mathrm e}^{2 x +6}}{5 \left (x -{\mathrm e}^{2 x +6}\right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 15, normalized size = 0.83 \begin {gather*} \frac {2 \, x}{5 \, {\left (x - e^{\left (2 \, x + 6\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 17, normalized size = 0.94 \begin {gather*} \frac {2\,x}{5\,x-5\,{\mathrm {e}}^{2\,x+6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.83 \begin {gather*} - \frac {2 x}{- 5 x + 5 e^{2 x + 6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________