Optimal. Leaf size=28 \[ \frac {4}{2+e^{16+2 x}}-\left (-x^2+\log (5 x)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.48, antiderivative size = 36, normalized size of antiderivative = 1.29, number of steps used = 17, number of rules used = 11, integrand size = 120, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.092, Rules used = {6688, 6742, 2282, 44, 36, 29, 31, 14, 2351, 2301, 2304} \begin {gather*} -x^4+2 x^2 \log (5 x)+\frac {4}{e^{2 x+16}+2}-\log ^2(5 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 31
Rule 36
Rule 44
Rule 2282
Rule 2301
Rule 2304
Rule 2351
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 \left (-4 x+8 x^3+e^{4 (8+x)} x \left (-1+2 x^2\right )+e^{2 (8+x)} \left (4-4 x+8 x^3\right )\right )}{\left (2+e^{2 (8+x)}\right )^2}+\frac {2 \left (-1+2 x^2\right ) \log (5 x)}{x}\right ) \, dx\\ &=-\left (2 \int \frac {-4 x+8 x^3+e^{4 (8+x)} x \left (-1+2 x^2\right )+e^{2 (8+x)} \left (4-4 x+8 x^3\right )}{\left (2+e^{2 (8+x)}\right )^2} \, dx\right )+2 \int \frac {\left (-1+2 x^2\right ) \log (5 x)}{x} \, dx\\ &=-\left (2 \int \left (-\frac {8}{\left (2+e^{16+2 x}\right )^2}+\frac {4}{2+e^{16+2 x}}+x \left (-1+2 x^2\right )\right ) \, dx\right )+2 \int \left (-\frac {\log (5 x)}{x}+2 x \log (5 x)\right ) \, dx\\ &=-\left (2 \int x \left (-1+2 x^2\right ) \, dx\right )-2 \int \frac {\log (5 x)}{x} \, dx+4 \int x \log (5 x) \, dx-8 \int \frac {1}{2+e^{16+2 x}} \, dx+16 \int \frac {1}{\left (2+e^{16+2 x}\right )^2} \, dx\\ &=-x^2+2 x^2 \log (5 x)-\log ^2(5 x)-2 \int \left (-x+2 x^3\right ) \, dx-4 \operatorname {Subst}\left (\int \frac {1}{x (2+x)} \, dx,x,e^{16+2 x}\right )+8 \operatorname {Subst}\left (\int \frac {1}{x (2+x)^2} \, dx,x,e^{16+2 x}\right )\\ &=-x^4+2 x^2 \log (5 x)-\log ^2(5 x)-2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{16+2 x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{2+x} \, dx,x,e^{16+2 x}\right )+8 \operatorname {Subst}\left (\int \left (\frac {1}{4 x}-\frac {1}{2 (2+x)^2}-\frac {1}{4 (2+x)}\right ) \, dx,x,e^{16+2 x}\right )\\ &=\frac {4}{2+e^{16+2 x}}-x^4+2 x^2 \log (5 x)-\log ^2(5 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 36, normalized size = 1.29 \begin {gather*} \frac {4}{2+e^{16+2 x}}-x^4+2 x^2 \log (5 x)-\log ^2(5 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 66, normalized size = 2.36 \begin {gather*} -\frac {x^{4} e^{\left (2 \, x + 16\right )} + 2 \, x^{4} + {\left (e^{\left (2 \, x + 16\right )} + 2\right )} \log \left (5 \, x\right )^{2} - 2 \, {\left (x^{2} e^{\left (2 \, x + 16\right )} + 2 \, x^{2}\right )} \log \left (5 \, x\right ) - 4}{e^{\left (2 \, x + 16\right )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 104, normalized size = 3.71 \begin {gather*} -\frac {x^{4} e^{\left (2 \, x + 16\right )} + 2 \, x^{4} - 2 \, x^{2} e^{\left (2 \, x + 16\right )} \log \relax (5) - 2 \, x^{2} e^{\left (2 \, x + 16\right )} \log \relax (x) - 4 \, x^{2} \log \relax (5) - 4 \, x^{2} \log \relax (x) + 2 \, e^{\left (2 \, x + 16\right )} \log \relax (5) \log \relax (x) + e^{\left (2 \, x + 16\right )} \log \relax (x)^{2} + 4 \, \log \relax (5) \log \relax (x) + 2 \, \log \relax (x)^{2} - 4}{e^{\left (2 \, x + 16\right )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 48, normalized size = 1.71
method | result | size |
risch | \(-\ln \left (5 x \right )^{2}+2 x^{2} \ln \left (5 x \right )-\frac {{\mathrm e}^{2 x +16} x^{4}+2 x^{4}-4}{{\mathrm e}^{2 x +16}+2}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 89, normalized size = 3.18 \begin {gather*} -\frac {2 \, x^{4} - 4 \, x^{2} \log \relax (5) + {\left (x^{4} e^{16} - 2 \, x^{2} e^{16} \log \relax (5) + e^{16} \log \relax (x)^{2} - 2 \, {\left (x^{2} e^{16} - e^{16} \log \relax (5)\right )} \log \relax (x)\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x^{2} - \log \relax (5)\right )} \log \relax (x) + 2 \, \log \relax (x)^{2} - 4}{e^{\left (2 \, x + 16\right )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.61, size = 38, normalized size = 1.36 \begin {gather*} 2\,x^2\,\ln \left (5\,x\right )+\frac {4\,{\mathrm {e}}^{-16}}{{\mathrm {e}}^{2\,x}+2\,{\mathrm {e}}^{-16}}-{\ln \left (5\,x\right )}^2-x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 31, normalized size = 1.11 \begin {gather*} - x^{4} + 2 x^{2} \log {\left (5 x \right )} - \log {\left (5 x \right )}^{2} + \frac {4}{e^{16} e^{2 x} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________