Optimal. Leaf size=15 \[ \frac {\left (-5+e^x+\frac {x}{12}\right ) x}{e^4} \]
________________________________________________________________________________________
Rubi [B] time = 0.02, antiderivative size = 33, normalized size of antiderivative = 2.20, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {12, 2176, 2194} \begin {gather*} \frac {x^2}{12 e^4}-\frac {5 x}{e^4}-e^{x-4}+e^{x-4} (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-30+x+e^x (6+6 x)\right ) \, dx}{6 e^4}\\ &=-\frac {5 x}{e^4}+\frac {x^2}{12 e^4}+\frac {\int e^x (6+6 x) \, dx}{6 e^4}\\ &=-\frac {5 x}{e^4}+\frac {x^2}{12 e^4}+e^{-4+x} (1+x)-\frac {\int e^x \, dx}{e^4}\\ &=-e^{-4+x}-\frac {5 x}{e^4}+\frac {x^2}{12 e^4}+e^{-4+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 1.60 \begin {gather*} \frac {-30 x+6 e^x x+\frac {x^2}{2}}{6 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 16, normalized size = 1.07 \begin {gather*} \frac {1}{12} \, {\left (x^{2} + 12 \, x e^{x} - 60 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 16, normalized size = 1.07 \begin {gather*} \frac {1}{12} \, {\left (x^{2} + 12 \, x e^{x} - 60 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 1.33
method | result | size |
risch | \(x \,{\mathrm e}^{x -4}-5 x \,{\mathrm e}^{-4}+\frac {{\mathrm e}^{-4} x^{2}}{12}\) | \(20\) |
default | \(\frac {{\mathrm e}^{-4} \left (-30 x +\frac {x^{2}}{2}+6 \,{\mathrm e}^{x} x \right )}{6}\) | \(21\) |
norman | \(x \,{\mathrm e}^{-4} {\mathrm e}^{x}-5 x \,{\mathrm e}^{-4}+\frac {{\mathrm e}^{-4} x^{2}}{12}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 16, normalized size = 1.07 \begin {gather*} \frac {1}{12} \, {\left (x^{2} + 12 \, x e^{x} - 60 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 12, normalized size = 0.80 \begin {gather*} \frac {x\,{\mathrm {e}}^{-4}\,\left (x+12\,{\mathrm {e}}^x-60\right )}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 1.47 \begin {gather*} \frac {x^{2}}{12 e^{4}} + \frac {x e^{x}}{e^{4}} - \frac {5 x}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________